NAME

Image::Leptonica::Func::fpix2

VERSION

version 0.03

fpix2.c

fpix2.c

  This file has these FPix utilities:
     - interconversions with pix, fpix, dpix
     - min and max values
     - integer scaling
     - arithmetic operations
     - set all
     - border functions
     - simple rasterop (source --> dest)
     - geometric transforms

  Interconversions between Pix, FPix and DPix
        FPIX          *pixConvertToFPix()
        DPIX          *pixConvertToDPix()
        PIX           *fpixConvertToPix()
        PIX           *fpixDisplayMaxDynamicRange()  [useful for debugging]
        DPIX          *fpixConvertToDPix()
        PIX           *dpixConvertToPix()
        FPIX          *dpixConvertToFPix()

  Min/max value
        l_int32        fpixGetMin()
        l_int32        fpixGetMax()
        l_int32        dpixGetMin()
        l_int32        dpixGetMax()

  Integer scaling
        FPIX          *fpixScaleByInteger()
        DPIX          *dpixScaleByInteger()

  Arithmetic operations
        FPIX          *fpixLinearCombination()
        l_int32        fpixAddMultConstant()
        DPIX          *dpixLinearCombination()
        l_int32        dpixAddMultConstant()

  Set all
        l_int32        fpixSetAllArbitrary()
        l_int32        dpixSetAllArbitrary()

  FPix border functions
        FPIX          *fpixAddBorder()
        FPIX          *fpixRemoveBorder()
        FPIX          *fpixAddMirroredBorder()
        FPIX          *fpixAddContinuedBorder()
        FPIX          *fpixAddSlopeBorder()

  FPix simple rasterop
        l_int32        fpixRasterop()

  FPix rotation by multiples of 90 degrees
        FPIX          *fpixRotateOrth()
        FPIX          *fpixRotate180()
        FPIX          *fpixRotate90()
        FPIX          *fpixFlipLR()
        FPIX          *fpixFlipTB()

  FPix affine and projective interpolated transforms
        FPIX          *fpixAffinePta()
        FPIX          *fpixAffine()
        FPIX          *fpixProjectivePta()
        FPIX          *fpixProjective()
        l_int32        linearInterpolatePixelFloat()

  Thresholding to 1 bpp Pix
        PIX           *fpixThresholdToPix()

  Generate function from components
        FPIX          *pixComponentFunction()

FUNCTIONS

dpixAddMultConstant

l_int32 dpixAddMultConstant ( DPIX *dpix, l_float64 addc, l_float64 multc )

dpixAddMultConstant()

    Input:  dpix
            addc  (use 0.0 to skip the operation)
            multc (use 1.0 to skip the operation)
    Return: 0 if OK, 1 on error

Notes:
    (1) This is an in-place operation.
    (2) It can be used to multiply each pixel by a constant,
        and also to add a constant to each pixel.  Multiplication
        is done first.

dpixConvertToFPix

FPIX * dpixConvertToFPix ( DPIX *dpix )

dpixConvertToFPix()

    Input:  dpix
    Return: fpix, or null on error

dpixConvertToPix

PIX * dpixConvertToPix ( DPIX *dpixs, l_int32 outdepth, l_int32 negvals, l_int32 errorflag )

dpixConvertToPix()

    Input:  dpixs
            outdepth (0, 8, 16 or 32 bpp)
            negvals (L_CLIP_TO_ZERO, L_TAKE_ABSVAL)
            errorflag (1 to output error stats; 0 otherwise)
    Return: pixd, or null on error

Notes:
    (1) Use @outdepth = 0 to programmatically determine the
        output depth.  If no values are greater than 255,
        it will set outdepth = 8; otherwise to 16 or 32.
    (2) Because we are converting a float to an unsigned int
        with a specified dynamic range (8, 16 or 32 bits), errors
        can occur.  If errorflag == TRUE, output the number
        of values out of range, both negative and positive.
    (3) If a pixel value is positive and out of range, clip to
        the maximum value represented at the outdepth of 8, 16
        or 32 bits.

dpixGetMax

l_int32 dpixGetMax ( DPIX *dpix, l_float64 *pmaxval, l_int32 *pxmaxloc, l_int32 *pymaxloc )

dpixGetMax()

    Input:  dpix
            &maxval (<optional return> max value)
            &xmaxloc (<optional return> x location of max)
            &ymaxloc (<optional return> y location of max)
    Return: 0 if OK; 1 on error

dpixGetMin

l_int32 dpixGetMin ( DPIX *dpix, l_float64 *pminval, l_int32 *pxminloc, l_int32 *pyminloc )

dpixGetMin()

    Input:  dpix
            &minval (<optional return> min value)
            &xminloc (<optional return> x location of min)
            &yminloc (<optional return> y location of min)
    Return: 0 if OK; 1 on error

dpixLinearCombination

DPIX * dpixLinearCombination ( DPIX *dpixd, DPIX *dpixs1, DPIX *dpixs2, l_float32 a, l_float32 b )

dpixLinearCombination()

    Input:  dpixd (<optional>; this can be null, equal to dpixs1, or
                   different from dpixs1)
            dpixs1 (can be == to dpixd)
            dpixs2
            a, b (multiplication factors on dpixs1 and dpixs2, rsp.)
    Return: dpixd always

Notes:
    (1) Computes pixelwise linear combination: a * src1 + b * src2
    (2) Alignment is to UL corner.
    (3) There are 3 cases.  The result can go to a new dest,
        in-place to dpixs1, or to an existing input dest:
        * dpixd == null:   (src1 + src2) --> new dpixd
        * dpixd == dpixs1:  (src1 + src2) --> src1  (in-place)
        * dpixd != dpixs1: (src1 + src2) --> input dpixd
    (4) dpixs2 must be different from both dpixd and dpixs1.

dpixScaleByInteger

DPIX * dpixScaleByInteger ( DPIX *dpixs, l_int32 factor )

dpixScaleByInteger()

    Input:  dpixs (low resolution, subsampled)
            factor (scaling factor)
    Return: dpixd (interpolated result), or null on error

Notes:
    (1) The width wd of dpixd is related to ws of dpixs by:
            wd = factor * (ws - 1) + 1   (and ditto for the height)
        We avoid special-casing boundary pixels in the interpolation
        by constructing fpixd by inserting (factor - 1) interpolated
        pixels between each pixel in fpixs.  Then
             wd = ws + (ws - 1) * (factor - 1)    (same as above)
        This also has the advantage that if we subsample by @factor,
        throwing out all the interpolated pixels, we regain the
        original low resolution dpix.

dpixSetAllArbitrary

l_int32 dpixSetAllArbitrary ( DPIX *dpix, l_float64 inval )

dpixSetAllArbitrary()

    Input:  dpix
            val (to set at each pixel)
    Return: 0 if OK, 1 on error

fpixAddBorder

FPIX * fpixAddBorder ( FPIX *fpixs, l_int32 left, l_int32 right, l_int32 top, l_int32 bot )

fpixAddBorder()

    Input:  fpixs
            left, right, top, bot (pixels on each side to be added)
    Return: fpixd, or null on error

Notes:
    (1) Adds border of '0' 32-bit pixels

fpixAddContinuedBorder

FPIX * fpixAddContinuedBorder ( FPIX *fpixs, l_int32 left, l_int32 right, l_int32 top, l_int32 bot )

fpixAddContinuedBorder()

    Input:  fpixs
            left, right, top, bot (pixels on each side to be added)
    Return: fpixd, or null on error

Notes:
    (1) This adds pixels on each side whose values are equal to
        the value on the closest boundary pixel.

fpixAddMirroredBorder

FPIX * fpixAddMirroredBorder ( FPIX *fpixs, l_int32 left, l_int32 right, l_int32 top, l_int32 bot )

fpixAddMirroredBorder()

    Input:  fpixs
            left, right, top, bot (pixels on each side to be added)
    Return: fpixd, or null on error

Notes:
    (1) See pixAddMirroredBorder() for situations of usage.

fpixAddMultConstant

l_int32 fpixAddMultConstant ( FPIX *fpix, l_float32 addc, l_float32 multc )

fpixAddMultConstant()

    Input:  fpix
            addc  (use 0.0 to skip the operation)
            multc (use 1.0 to skip the operation)
    Return: 0 if OK, 1 on error

Notes:
    (1) This is an in-place operation.
    (2) It can be used to multiply each pixel by a constant,
        and also to add a constant to each pixel.  Multiplication
        is done first.

fpixAddSlopeBorder

FPIX * fpixAddSlopeBorder ( FPIX *fpixs, l_int32 left, l_int32 right, l_int32 top, l_int32 bot )

fpixAddSlopeBorder()

    Input:  fpixs
            left, right, top, bot (pixels on each side to be added)
    Return: fpixd, or null on error

Notes:
    (1) This adds pixels on each side whose values have a normal
        derivative equal to the normal derivative at the boundary
        of fpixs.

fpixAffine

FPIX * fpixAffine ( FPIX *fpixs, l_float32 *vc, l_float32 inval )

fpixAffine()

    Input:  fpixs (8 bpp)
            vc  (vector of 8 coefficients for projective transformation)
            inval (value brought in; typ. 0)
    Return: fpixd, or null on error

fpixAffinePta

FPIX * fpixAffinePta ( FPIX *fpixs, PTA *ptad, PTA *ptas, l_int32 border, l_float32 inval )

fpixAffinePta()

    Input:  fpixs (8 bpp)
            ptad  (4 pts of final coordinate space)
            ptas  (4 pts of initial coordinate space)
            border (size of extension with constant normal derivative)
            inval (value brought in; typ. 0)
    Return: fpixd, or null on error

Notes:
    (1) If @border > 0, all four sides are extended by that distance,
        and removed after the transformation is finished.  Pixels
        that would be brought in to the trimmed result from outside
        the extended region are assigned @inval.  The purpose of
        extending the image is to avoid such assignments.
    (2) On the other hand, you may want to give all pixels that
        are brought in from outside fpixs a specific value.  In that
        case, set @border == 0.

fpixConvertToDPix

DPIX * fpixConvertToDPix ( FPIX *fpix )

fpixConvertToDPix()

    Input:  fpix
    Return: dpix, or null on error

fpixConvertToPix

PIX * fpixConvertToPix ( FPIX *fpixs, l_int32 outdepth, l_int32 negvals, l_int32 errorflag )

fpixConvertToPix()

    Input:  fpixs
            outdepth (0, 8, 16 or 32 bpp)
            negvals (L_CLIP_TO_ZERO, L_TAKE_ABSVAL)
            errorflag (1 to output error stats; 0 otherwise)
    Return: pixd, or null on error

Notes:
    (1) Use @outdepth = 0 to programmatically determine the
        output depth.  If no values are greater than 255,
        it will set outdepth = 8; otherwise to 16 or 32.
    (2) Because we are converting a float to an unsigned int
        with a specified dynamic range (8, 16 or 32 bits), errors
        can occur.  If errorflag == TRUE, output the number
        of values out of range, both negative and positive.
    (3) If a pixel value is positive and out of range, clip to
        the maximum value represented at the outdepth of 8, 16
        or 32 bits.

fpixDisplayMaxDynamicRange

PIX * fpixDisplayMaxDynamicRange ( FPIX *fpixs )

fpixDisplayMaxDynamicRange()

    Input:  fpixs
    Return: pixd (8 bpp), or null on error

fpixFlipTB

FPIX * fpixFlipTB ( FPIX *fpixd, FPIX *fpixs )

fpixFlipTB()

    Input:  fpixd (<optional>; can be null, equal to fpixs,
                   or different from fpixs)
            fpixs
    Return: fpixd, or null on error

Notes:
    (1) This does a top-bottom flip of the image, which is
        equivalent to a rotation out of the plane about a
        horizontal line through the image center.
    (2) There are 3 cases for input:
        (a) fpixd == null (creates a new fpixd)
        (b) fpixd == fpixs (in-place operation)
        (c) fpixd != fpixs (existing fpixd)
    (3) For clarity, use these three patterns, respectively:
        (a) fpixd = fpixFlipTB(NULL, fpixs);
        (b) fpixFlipTB(fpixs, fpixs);
        (c) fpixFlipTB(fpixd, fpixs);
    (4) If an existing fpixd is not the same size as fpixs, the
        image data will be reallocated.

fpixGetMax

l_int32 fpixGetMax ( FPIX *fpix, l_float32 *pmaxval, l_int32 *pxmaxloc, l_int32 *pymaxloc )

fpixGetMax()

    Input:  fpix
            &maxval (<optional return> max value)
            &xmaxloc (<optional return> x location of max)
            &ymaxloc (<optional return> y location of max)
    Return: 0 if OK; 1 on error

fpixGetMin

l_int32 fpixGetMin ( FPIX *fpix, l_float32 *pminval, l_int32 *pxminloc, l_int32 *pyminloc )

fpixGetMin()

    Input:  fpix
            &minval (<optional return> min value)
            &xminloc (<optional return> x location of min)
            &yminloc (<optional return> y location of min)
    Return: 0 if OK; 1 on error

fpixLinearCombination

FPIX * fpixLinearCombination ( FPIX *fpixd, FPIX *fpixs1, FPIX *fpixs2, l_float32 a, l_float32 b )

fpixLinearCombination()

    Input:  fpixd (<optional>; this can be null, equal to fpixs1, or
                   different from fpixs1)
            fpixs1 (can be == to fpixd)
            fpixs2
            a, b (multiplication factors on fpixs1 and fpixs2, rsp.)
    Return: fpixd always

Notes:
    (1) Computes pixelwise linear combination: a * src1 + b * src2
    (2) Alignment is to UL corner.
    (3) There are 3 cases.  The result can go to a new dest,
        in-place to fpixs1, or to an existing input dest:
        * fpixd == null:   (src1 + src2) --> new fpixd
        * fpixd == fpixs1:  (src1 + src2) --> src1  (in-place)
        * fpixd != fpixs1: (src1 + src2) --> input fpixd
    (4) fpixs2 must be different from both fpixd and fpixs1.

fpixProjective

FPIX * fpixProjective ( FPIX *fpixs, l_float32 *vc, l_float32 inval )

fpixProjective()

    Input:  fpixs (8 bpp)
            vc  (vector of 8 coefficients for projective transformation)
            inval (value brought in; typ. 0)
    Return: fpixd, or null on error

fpixProjectivePta

FPIX * fpixProjectivePta ( FPIX *fpixs, PTA *ptad, PTA *ptas, l_int32 border, l_float32 inval )

fpixProjectivePta()

    Input:  fpixs (8 bpp)
            ptad  (4 pts of final coordinate space)
            ptas  (4 pts of initial coordinate space)
            border (size of extension with constant normal derivative)
            inval (value brought in; typ. 0)
    Return: fpixd, or null on error

Notes:
    (1) If @border > 0, all four sides are extended by that distance,
        and removed after the transformation is finished.  Pixels
        that would be brought in to the trimmed result from outside
        the extended region are assigned @inval.  The purpose of
        extending the image is to avoid such assignments.
    (2) On the other hand, you may want to give all pixels that
        are brought in from outside fpixs a specific value.  In that
        case, set @border == 0.

fpixRasterop

l_int32 fpixRasterop ( FPIX *fpixd, l_int32 dx, l_int32 dy, l_int32 dw, l_int32 dh, FPIX *fpixs, l_int32 sx, l_int32 sy )

fpixRasterop()

    Input:  fpixd  (dest fpix)
            dx     (x val of UL corner of dest rectangle)
            dy     (y val of UL corner of dest rectangle)
            dw     (width of dest rectangle)
            dh     (height of dest rectangle)
            fpixs  (src fpix)
            sx     (x val of UL corner of src rectangle)
            sy     (y val of UL corner of src rectangle)
    Return: 0 if OK; 1 on error.

Notes:
    (1) This is similiar in structure to pixRasterop(), except
        it only allows copying from the source into the destination.
        For that reason, no op code is necessary.  Additionally,
        all pixels are 32 bit words (float values), which makes
        the copy very simple.
    (2) Clipping of both src and dest fpix are done automatically.
    (3) This allows in-place copying, without checking to see if
        the result is valid:  use for in-place with caution!

fpixRemoveBorder

FPIX * fpixRemoveBorder ( FPIX *fpixs, l_int32 left, l_int32 right, l_int32 top, l_int32 bot )

fpixRemoveBorder()

    Input:  fpixs
            left, right, top, bot (pixels on each side to be removed)
    Return: fpixd, or null on error

fpixRotate180

FPIX * fpixRotate180 ( FPIX *fpixd, FPIX *fpixs )

fpixRotate180()

    Input:  fpixd  (<optional>; can be null, equal to fpixs,
                    or different from fpixs)
            fpixs
    Return: fpixd, or null on error

Notes:
    (1) This does a 180 rotation of the image about the center,
        which is equivalent to a left-right flip about a vertical
        line through the image center, followed by a top-bottom
        flip about a horizontal line through the image center.
    (2) There are 3 cases for input:
        (a) fpixd == null (creates a new fpixd)
        (b) fpixd == fpixs (in-place operation)
        (c) fpixd != fpixs (existing fpixd)
    (3) For clarity, use these three patterns, respectively:
        (a) fpixd = fpixRotate180(NULL, fpixs);
        (b) fpixRotate180(fpixs, fpixs);
        (c) fpixRotate180(fpixd, fpixs);

fpixRotate90

FPIX * fpixRotate90 ( FPIX *fpixs, l_int32 direction )

fpixRotate90()

    Input:  fpixs
            direction (1 = clockwise,  -1 = counter-clockwise)
    Return: fpixd, or null on error

Notes:
    (1) This does a 90 degree rotation of the image about the center,
        either cw or ccw, returning a new pix.
    (2) The direction must be either 1 (cw) or -1 (ccw).

fpixRotateOrth

FPIX * fpixRotateOrth ( FPIX *fpixs, l_int32 quads )

fpixRotateOrth()

    Input:  fpixs
            quads (0-3; number of 90 degree cw rotations)
    Return: fpixd, or null on error

fpixScaleByInteger

FPIX * fpixScaleByInteger ( FPIX *fpixs, l_int32 factor )

fpixScaleByInteger()

    Input:  fpixs (low resolution, subsampled)
            factor (scaling factor)
    Return: fpixd (interpolated result), or null on error

Notes:
    (1) The width wd of fpixd is related to ws of fpixs by:
            wd = factor * (ws - 1) + 1   (and ditto for the height)
        We avoid special-casing boundary pixels in the interpolation
        by constructing fpixd by inserting (factor - 1) interpolated
        pixels between each pixel in fpixs.  Then
             wd = ws + (ws - 1) * (factor - 1)    (same as above)
        This also has the advantage that if we subsample by @factor,
        throwing out all the interpolated pixels, we regain the
        original low resolution fpix.

fpixSetAllArbitrary

l_int32 fpixSetAllArbitrary ( FPIX *fpix, l_float32 inval )

fpixSetAllArbitrary()

    Input:  fpix
            val (to set at each pixel)
    Return: 0 if OK, 1 on error

fpixThresholdToPix

PIX * fpixThresholdToPix ( FPIX *fpix, l_float32 thresh )

fpixThresholdToPix()

    Input:  fpix
            thresh
    Return: pixd (1 bpp), or null on error

Notes:
    (1) For all values of fpix that are <= thresh, sets the pixel
        in pixd to 1.

linearInterpolatePixelFloat

l_int32 linearInterpolatePixelFloat ( l_float32 *datas, l_int32 w, l_int32 h, l_float32 x, l_float32 y, l_float32 inval, l_float32 *pval )

linearInterpolatePixelFloat()

    Input:  datas (ptr to beginning of float image data)
            wpls (32-bit word/line for this data array)
            w, h (of image)
            x, y (floating pt location for evaluation)
            inval (float value brought in from the outside when the
                   input x,y location is outside the image)
            &val (<return> interpolated float value)
    Return: 0 if OK, 1 on error

Notes:
    (1) This is a standard linear interpolation function.  It is
        equivalent to area weighting on each component, and
        avoids "jaggies" when rendering sharp edges.

pixComponentFunction

FPIX * pixComponentFunction ( PIX *pix, l_float32 rnum, l_float32 gnum, l_float32 bnum, l_float32 rdenom, l_float32 gdenom, l_float32 bdenom )

pixComponentFunction()

    Input:  pix (32 bpp rgb)
            rnum, gnum, bnum (coefficients for numerator)
            rdenom, gdenom, bdenom (coefficients for denominator)
    Return: fpixd, or null on error

Notes:
    (1) This stores a function of the component values of each
        input pixel in @fpixd.
    (2) The function is a ratio of linear combinations of component values.
        There are two special cases for denominator coefficients:
        (a) The denominator is 1.0: input 0 for all denominator coefficients
        (b) Only one component is used in the denominator: input 1.0
            for that denominator component and 0.0 for the other two.
    (3) If the denominator is 0, multiply by an arbitrary number that
        is much larger than 1.  Choose 256 "arbitrarily".

pixConvertToDPix

DPIX * pixConvertToDPix ( PIX *pixs, l_int32 ncomps )

pixConvertToDPix()

    Input:  pix (1, 2, 4, 8, 16 or 32 bpp)
            ncomps (number of components: 3 for RGB, 1 otherwise)
    Return: dpix, or null on error

Notes:
    (1) If colormapped, remove to grayscale.
    (2) If 32 bpp and @ncomps == 3, this is RGB; convert to luminance.
        In all other cases the src image is treated as having a single
        component of pixel values.

pixConvertToFPix

FPIX * pixConvertToFPix ( PIX *pixs, l_int32 ncomps )

pixConvertToFPix()

    Input:  pix (1, 2, 4, 8, 16 or 32 bpp)
            ncomps (number of components: 3 for RGB, 1 otherwise)
    Return: fpix, or null on error

Notes:
    (1) If colormapped, remove to grayscale.
    (2) If 32 bpp and @ncomps == 3, this is RGB; convert to luminance.
        In all other cases the src image is treated as having a single
        component of pixel values.

AUTHOR

Zakariyya Mughal <zmughal@cpan.org>

COPYRIGHT AND LICENSE

This software is copyright (c) 2014 by Zakariyya Mughal.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5 programming language system itself.