NAME

Image::Leptonica::Func::kernel

VERSION

version 0.03

kernel.c

kernel.c

    Basic operations on kernels for image convolution

       Create/destroy/copy
          L_KERNEL   *kernelCreate()
          void        kernelDestroy()
          L_KERNEL   *kernelCopy()

       Accessors:
          l_int32     kernelGetElement()
          l_int32     kernelSetElement()
          l_int32     kernelGetParameters()
          l_int32     kernelSetOrigin()
          l_int32     kernelGetSum()
          l_int32     kernelGetMinMax()

       Normalize/invert
          L_KERNEL   *kernelNormalize()
          L_KERNEL   *kernelInvert()

       Helper function
          l_float32 **create2dFloatArray()

       Serialized I/O
          L_KERNEL   *kernelRead()
          L_KERNEL   *kernelReadStream()
          l_int32     kernelWrite()
          l_int32     kernelWriteStream()

       Making a kernel from a compiled string
          L_KERNEL   *kernelCreateFromString()

       Making a kernel from a simple file format
          L_KERNEL   *kernelCreateFromFile()

       Making a kernel from a Pix
          L_KERNEL   *kernelCreateFromPix()

       Display a kernel in a pix
          PIX        *kernelDisplayInPix()

       Parse string to extract numbers
          NUMA       *parseStringForNumbers()

    Simple parametric kernels
          L_KERNEL   *makeFlatKernel()
          L_KERNEL   *makeGaussianKernel()
          L_KERNEL   *makeGaussianKernelSep()
          L_KERNEL   *makeDoGKernel()

FUNCTIONS

create2dFloatArray

l_float32 ** create2dFloatArray ( l_int32 sy, l_int32 sx )

create2dFloatArray()

    Input:  sy (rows == height)
            sx (columns == width)
    Return: doubly indexed array (i.e., an array of sy row pointers,
            each of which points to an array of sx floats)

Notes:
    (1) The array[sy][sx] is indexed in standard "matrix notation",
        with the row index first.

kernelCopy

L_KERNEL * kernelCopy ( L_KERNEL *kels )

kernelCopy()

    Input:  kels (source kernel)
    Return: keld (copy of kels), or null on error

kernelCreate

L_KERNEL * kernelCreate ( l_int32 height, l_int32 width )

kernelCreate()

    Input:  height, width
    Return: kernel, or null on error

Notes:
    (1) kernelCreate() initializes all values to 0.
    (2) After this call, (cy,cx) and nonzero data values must be
        assigned.

kernelCreateFromFile

L_KERNEL * kernelCreateFromFile ( const char *filename )

kernelCreateFromFile()

    Input:  filename
    Return: kernel, or null on error

Notes:
    (1) The file contains, in the following order:
         - Any number of comment lines starting with '#' are ignored
         - The height and width of the kernel
         - The y and x values of the kernel origin
         - The kernel data, formatted as lines of numbers (integers
           or floats) for the kernel values in row-major order,
           and with no other punctuation.
           (Note: this differs from kernelCreateFromString(),
           where each line must begin and end with a double-quote
           to tell the compiler it's part of a string.)
         - The kernel specification ends when a blank line,
           a comment line, or the end of file is reached.
    (2) All lines must be left-justified.
    (3) See kernelCreateFromString() for a description of the string
        format for the kernel data.  As an example, here are the lines
        of a valid kernel description file  In the file, all lines
        are left-justified:
                  # small 3x3 kernel
                  3 3
                  1 1
                  25.5   51    24.3
                  70.2  146.3  73.4
                  20     50.9  18.4

kernelCreateFromPix

L_KERNEL * kernelCreateFromPix ( PIX *pix, l_int32 cy, l_int32 cx )

kernelCreateFromPix()

    Input:  pix
            cy, cx (origin of kernel)
    Return: kernel, or null on error

Notes:
    (1) The origin must be positive and within the dimensions of the pix.

kernelCreateFromString

L_KERNEL * kernelCreateFromString ( l_int32 h, l_int32 w, l_int32 cy, l_int32 cx, const char *kdata )

kernelCreateFromString()

    Input:  height, width
            cy, cx   (origin)
            kdata
    Return: kernel of the given size, or null on error

Notes:
    (1) The data is an array of chars, in row-major order, giving
        space separated integers in the range [-255 ... 255].
    (2) The only other formatting limitation is that you must
        leave space between the last number in each row and
        the double-quote.  If possible, it's also nice to have each
        line in the string represent a line in the kernel; e.g.,
            static const char *kdata =
                " 20   50   20 "
                " 70  140   70 "
                " 20   50   20 ";

kernelDestroy

void kernelDestroy ( L_KERNEL **pkel )

kernelDestroy()

    Input:  &kel (<to be nulled>)
    Return: void

kernelDisplayInPix

PIX * kernelDisplayInPix ( L_KERNEL *kel, l_int32 size, l_int32 gthick )

kernelDisplayInPix()

    Input:  kernel
            size (of grid interiors; odd; either 1 or a minimum size
                  of 17 is enforced)
            gthick (grid thickness; either 0 or a minimum size of 2
                    is enforced)
    Return: pix (display of kernel), or null on error

Notes:
    (1) This gives a visual representation of a kernel.
    (2) There are two modes of display:
        (a) Grid lines of minimum width 2, surrounding regions
            representing kernel elements of minimum size 17,
            with a "plus" mark at the kernel origin, or
        (b) A pix without grid lines and using 1 pixel per kernel element.
    (3) For both cases, the kernel absolute value is displayed,
        normalized such that the maximum absolute value is 255.
    (4) Large 2D separable kernels should be used for convolution
        with two 1D kernels.  However, for the bilateral filter,
        the computation time is independent of the size of the
        2D content kernel.

kernelGetElement

l_int32 kernelGetElement ( L_KERNEL *kel, l_int32 row, l_int32 col, l_float32 *pval )

kernelGetElement()

    Input:  kel
            row
            col
            &val
    Return: 0 if OK; 1 on error

kernelGetMinMax

l_int32 kernelGetMinMax ( L_KERNEL *kel, l_float32 *pmin, l_float32 *pmax )

kernelGetMinMax()

    Input:  kernel
            &min (<optional return> minimum value)
            &max (<optional return> maximum value)
    Return: 0 if OK, 1 on error

kernelGetParameters

l_int32 kernelGetParameters ( L_KERNEL *kel, l_int32 *psy, l_int32 *psx, l_int32 *pcy, l_int32 *pcx )

kernelGetParameters()

    Input:  kernel
            &sy, &sx, &cy, &cx (<optional return>; each can be null)
    Return: 0 if OK, 1 on error

kernelGetSum

l_int32 kernelGetSum ( L_KERNEL *kel, l_float32 *psum )

kernelGetSum()

    Input:  kernel
            &sum (<return> sum of all kernel values)
    Return: 0 if OK, 1 on error

kernelInvert

L_KERNEL * kernelInvert ( L_KERNEL *kels )

kernelInvert()

    Input:  kels (source kel, to be inverted)
    Return: keld (spatially inverted, about the origin), or null on error

Notes:
    (1) For convolution, the kernel is spatially inverted before
        a "correlation" operation is done between the kernel and the image.

kernelNormalize

L_KERNEL * kernelNormalize ( L_KERNEL *kels, l_float32 normsum )

kernelNormalize()

    Input:  kels (source kel, to be normalized)
            normsum (desired sum of elements in keld)
    Return: keld (normalized version of kels), or null on error
                 or if sum of elements is very close to 0)

Notes:
    (1) If the sum of kernel elements is close to 0, do not
        try to calculate the normalized kernel.  Instead,
        return a copy of the input kernel, with a warning.

kernelRead

L_KERNEL * kernelRead ( const char *fname )

kernelRead()

    Input:  filename
    Return: kernel, or null on error

kernelReadStream

L_KERNEL * kernelReadStream ( FILE *fp )

kernelReadStream()

    Input:  stream
    Return: kernel, or null on error

kernelSetElement

l_int32 kernelSetElement ( L_KERNEL *kel, l_int32 row, l_int32 col, l_float32 val )

kernelSetElement()

    Input:  kernel
            row
            col
            val
    Return: 0 if OK; 1 on error

kernelSetOrigin

l_int32 kernelSetOrigin ( L_KERNEL *kel, l_int32 cy, l_int32 cx )

kernelSetOrigin()

    Input:  kernel
            cy, cx
    Return: 0 if OK; 1 on error

kernelWrite

l_int32 kernelWrite ( const char *fname, L_KERNEL *kel )

kernelWrite()

    Input:  fname (output file)
            kernel
    Return: 0 if OK, 1 on error

kernelWriteStream

l_int32 kernelWriteStream ( FILE *fp, L_KERNEL *kel )

kernelWriteStream()

    Input:  stream
            kel
    Return: 0 if OK, 1 on error

makeDoGKernel

L_KERNEL * makeDoGKernel ( l_int32 halfheight, l_int32 halfwidth, l_float32 stdev, l_float32 ratio )

makeDoGKernel()

    Input:  halfheight, halfwidth (sx = 2 * halfwidth + 1, etc)
            stdev (standard deviation of narrower gaussian)
            ratio (of stdev for wide filter to stdev for narrow one)
    Return: kernel, or null on error

Notes:
    (1) The DoG (difference of gaussians) is a wavelet mother
        function with null total sum.  By subtracting two blurred
        versions of the image, it acts as a bandpass filter for
        frequencies passed by the narrow gaussian but stopped
        by the wide one.See:
             http://en.wikipedia.org/wiki/Difference_of_Gaussians
    (2) The kernel size (sx, sy) = (2 * halfwidth + 1, 2 * halfheight + 1).
    (3) The kernel center (cx, cy) = (halfwidth, halfheight).
    (4) The halfwidth and halfheight are typically equal, and
        are typically several times larger than the standard deviation.
    (5) The ratio is the ratio of standard deviations of the wide
        to narrow gaussian.  It must be >= 1.0; 1.0 is a no-op.
    (6) Because the kernel is a null sum, it must be invoked without
        normalization in pixConvolve().

makeFlatKernel

L_KERNEL * makeFlatKernel ( l_int32 height, l_int32 width, l_int32 cy, l_int32 cx )

makeFlatKernel()

    Input:  height, width
            cy, cx (origin of kernel)
    Return: kernel, or null on error

Notes:
    (1) This is the same low-pass filtering kernel that is used
        in the block convolution functions.
    (2) The kernel origin (@cy, @cx) is typically placed as near
        the center of the kernel as possible.  If height and
        width are odd, then using cy = height / 2 and
        cx = width / 2 places the origin at the exact center.
    (3) This returns a normalized kernel.

makeGaussianKernel

L_KERNEL * makeGaussianKernel ( l_int32 halfheight, l_int32 halfwidth, l_float32 stdev, l_float32 max )

makeGaussianKernel()

    Input:  halfheight, halfwidth (sx = 2 * halfwidth + 1, etc)
            stdev (standard deviation)
            max (value at (cx,cy))
    Return: kernel, or null on error

Notes:
    (1) The kernel size (sx, sy) = (2 * halfwidth + 1, 2 * halfheight + 1).
    (2) The kernel center (cx, cy) = (halfwidth, halfheight).
    (3) The halfwidth and halfheight are typically equal, and
        are typically several times larger than the standard deviation.
    (4) If pixConvolve() is invoked with normalization (the sum of
        kernel elements = 1.0), use 1.0 for max (or any number that's
        not too small or too large).

makeGaussianKernelSep

l_int32 makeGaussianKernelSep ( l_int32 halfheight, l_int32 halfwidth, l_float32 stdev, l_float32 max, L_KERNEL **pkelx, L_KERNEL **pkely )

makeGaussianKernelSep()

    Input:  halfheight, halfwidth (sx = 2 * halfwidth + 1, etc)
            stdev (standard deviation)
            max (value at (cx,cy))
            &kelx (<return> x part of kernel)
            &kely (<return> y part of kernel)
    Return: 0 if OK, 1 on error

Notes:
    (1) See makeGaussianKernel() for description of input parameters.
    (2) These kernels are constructed so that the result of both
        normalized and un-normalized convolution will be the same
        as when convolving with pixConvolve() using the full kernel.
    (3) The trick for the un-normalized convolution is to have the
        product of the two kernel elemets at (cx,cy) be equal to max,
        not max**2.  That's why the max for kely is 1.0.  If instead
        we use sqrt(max) for both, the results are slightly less
        accurate, when compared to using the full kernel in
        makeGaussianKernel().

parseStringForNumbers

NUMA * parseStringForNumbers ( const char *str, const char *seps )

parseStringForNumbers()

    Input:  string (containing numbers; not changed)
            seps (string of characters that can be used between ints)
    Return: numa (of numbers found), or null on error

Note:
   (1) The numbers can be ints or floats.

AUTHOR

Zakariyya Mughal <zmughal@cpan.org>

COPYRIGHT AND LICENSE

This software is copyright (c) 2014 by Zakariyya Mughal.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5 programming language system itself.