NAME
ntheory - Number theory utilities
SEE
See Math::Prime::Util for complete documentation.
QUICK REFERENCE
PRIMALITY
is_prob_prime(n) primality test (BPSW)
is_prime(n) primality test (BPSW + extra)
is_provable_prime(n) primality test with proof
is_provable_prime_with_cert(n) primality test: (isprime,cert)
prime_certificate(n) as above with just certificate
verify_prime(cert) verify a primality certificate
is_mersenne_prime(p) is 2^p-1 prime or composite
is_aks_prime(n) AKS deterministic test (slow)
is_ramanujan_prime(n) is n a Ramanujan prime
PROBABLE PRIME TESTS
is_pseudoprime(n,bases) Fermat probable prime tests
is_strong_pseudoprime(n,bases) Miller-Rabin tests to bases
is_lucas_pseudoprime(n) Lucas test
is_strong_lucas_pseudoprime(n) strong Lucas test
is_almost_extra_strong_lucas_pseudoprime(n, [incr]) AES Lucas test
is_extra_strong_lucas_pseudoprime(n) extra strong Lucas test
is_frobenius_pseudoprime(n, [a,b]) Frobenius quadratic test
is_frobenius_underwood_pseudoprime(n) combined PSP and Lucas
is_frobenius_khashin_pseudoprime(n) Khashin's 2013 Frobenius test
is_perrin_pseudoprime(n) Perrin test
is_catalan_pseudoprime(n) Catalan test
is_bpsw_prime(n) combined SPSP-2 and ES Lucas
miller_rabin_random(n, ntests) perform random-base MR tests
PRIMES
primes([start,] end) array ref of primes
twin_primes([start,] end) array ref of twin primes
ramanujan_primes([start,] end) array ref of Ramanujan primes
sieve_prime_cluster(start, end, @C) list of prime k-tuples
next_prime(n) next prime > n
prev_prime(n) previous prime < n
prime_count(n) count of primes <= n
prime_count(start, end) count of primes in range
prime_count_lower(n) fast lower bound for prime count
prime_count_upper(n) fast upper bound for prime count
prime_count_approx(n) fast approximate count of primes
nth_prime(n) the nth prime (n=1 returns 2)
nth_prime_lower(n) fast lower bound for nth prime
nth_prime_upper(n) fast upper bound for nth prime
nth_prime_approx(n) fast approximate nth prime
twin_prime_count(n) count of twin primes <= n
twin_prime_count(start, end) count of twin primes in range
twin_prime_count_approx(n) fast approx count of twin primes
nth_twin_prime(n) the nth twin prime (n=1 returns 3)
nth_twin_prime_approx(n) fast approximate nth twin prime
ramanujan_prime_count(n) count of Ramanujan primes <= n
ramanujan_prime_count(start, end) count of Ramanujan primes in range
nth_ramanujan_prime(n) the nth Ramanujan prime (Rn)
legendre_phi(n,a) # below n not div by first a primes
prime_precalc(n) precalculate primes to n
sum_primes([start,] end) return summation of primes in range
print_primes(start,end[,fd]) print primes to stdout or fd
FACTORING
factor(n) array of prime factors of n
factor_exp(n) array of [p,k] factors p^k
divisors(n) array of divisors of n
divisor_sum(n) sum of divisors
divisor_sum(n,k) sum of k-th power of divisors
divisor_sum(n,sub{...}) sum of code run for each divisor
znlog(a, g, p) solve k in a = g^k mod p
ITERATORS
forprimes { ... } [start,] end loop over primes in range
forcomposites { ... } [start,] end loop over composites in range
foroddcomposites {...} [start,] end loop over odd composites in range
fordivisors { ... } n loop over the divisors of n
forpart { ... } n [,{...}] loop over integer partitions
forcomp { ... } n [,{...}] loop over integer compositions
forcomb { ... } n, k loop over combinations
forperm { ... } n loop over permutations
formultiperm { ... } \@n loop over multiset permutations
prime_iterator returns a simple prime iterator
prime_iterator_object returns a prime iterator object
RANDOM PRIMES
random_prime([start,] end) random prime in a range
random_ndigit_prime(n) random prime with n digits
random_nbit_prime(n) random prime with n bits
random_strong_prime(n) random strong prime with n bits
random_proven_prime(n) random n-bit prime with proof
random_proven_prime_with_cert(n) as above and include certificate
random_maurer_prime(n) random n-bit prime w/ Maurer's alg.
random_maurer_prime_with_cert(n) as above and include certificate
random_shawe_taylor_prime(n) random n-bit prime with S-T alg.
random_shawe_taylor_prime_with_cert(n) as above including certificate
LISTS
vecsum(@list) integer sum of list
vecprod(@list) integer product of list
vecmin(@list) minimum of list of integers
vecmax(@list) maximum of list of integers
vecextract(\@list, mask) select from list based on mask
vecreduce { ... } @list reduce / left fold applied to list
vecall { ... } @list return true if all are true
vecany { ... } @list return true if any are true
vecnone { ... } @list return true if none are true
vecnotall { ... } @list return true if not all are true
vecfirst { ... } @list return first value that evals true
MATH
todigits(n[,base[,len]]) convert n to digit array in base
todigitstring(n[,base[,len]]) convert n to string in base
fromdigits(\@d,[,base]) convert base digit vector to number
fromdigits(str,[,base]) convert base digit string to number
sumdigits(n) sum of digits, with optional base
is_power(n) return k if n = p^k for integer p, max k
is_power(n,k) return 1 if n = p^k for integer p and k
is_power(n,k,\$root) as above but set root to p.
is_square_free(n) return true if no repeated factors
is_carmichael(n) is n a Carmichael number
sqrtint(n) integer square root
gcd(@list) greatest common divisor
lcm(@list) least common multiple
gcdext(x,y) return (u,v,d) where u*x+v*y=d
chinese([a,mod1],[b,mod2],...) Chinese Remainder Theorem
primorial(n) product of primes below n
pn_primorial(n) product of first n primes
factorial(n) product of first n integers: n!
binomial(n,k) binomial coefficient
partitions(n) number of integer partitions
valuation(n,k) number of times n is divisible by k
binary(n) binary string or array of digits
hammingweight(n) population count (# of binary 1s)
kronecker(a,b) Kronecker (Jacobi) symbol
invmod(a,n) inverse of a modulo n
moebius(n) Moebius function of n
moebius(beg, end) array of Moebius in range
mertens(n) sum of Moebius for 1 to n
euler_phi(n) Euler totient of n
euler_phi(beg, end) Euler totient for a range
jordan_totient(n,k) Jordan's totient
carmichael_lambda(n) Carmichael's Lambda function
exp_mangoldt exponential of Mangoldt function
liouville(n) Liouville function
znorder(a,n) multiplicative order of a mod n
znprimroot(n) smallest primitive root
chebyshev_theta(n) first Chebyshev function
chebyshev_psi(n) second Chebyshev function
ramanujan_tau(n) Ramanujan's Tau function
consecutive_integer_lcm(n) lcm(1 .. n)
lucasu(P, Q, k) U_k for Lucas(P,Q)
lucasv(P, Q, k) V_k for Lucas(P,Q)
lucas_sequence(n, P, Q, k) (U_k,V_k,Q_k) for Lucas(P,Q) mod n
bernfrac(n) Bernoulli number as (num,den)
bernreal(n) Bernoulli number as BigFloat
harmfrac(n) Harmonic number as (num,den)
harmreal(n) Harmonic number as BigFloat
stirling(n,m,[type]) Stirling numbers of 1st or 2nd type
NON-INTEGER MATH
ExponentialIntegral(x) Ei(x)
LogarithmicIntegral(x) li(x)
RiemannZeta(x) ζ(s)-1, real-valued Riemann Zeta
RiemannR(x) Riemann's R function
LambertW(k) Lambert W: solve for W in k = W exp(W)
Pi([n]) The constant π (NV or n digits)
SUPPORT
prime_get_config gets hash ref of current settings
prime_set_config(%hash) sets parameters
prime_memfree frees any cached memory
COPYRIGHT
Copyright 2011-2016 by Dana Jacobsen <dana@acm.org>
This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.