/* ------------------------------------------------------------------ */
/* decCommon.c -- common code for all three fixed-size types */
/* ------------------------------------------------------------------ */
/* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */
/* */
/* This software is made available under the terms of the */
/* ICU License -- ICU 1.8.1 and later. */
/* */
/* The description and User's Guide ("The decNumber C Library") for */
/* this software is included in the package as decNumber.pdf. This */
/* document is also available in HTML, together with specifications, */
/* testcases, and Web links, on the General Decimal Arithmetic page. */
/* */
/* Please send comments, suggestions, and corrections to the author: */
/* mfc@uk.ibm.com */
/* Mike Cowlishaw, IBM Fellow */
/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
/* ------------------------------------------------------------------ */
/* This module comprises code that is shared between all the formats */
/* (decSingle, decDouble, and decQuad); it includes set and extract */
/* of format components, widening, narrowing, and string conversions. */
/* */
/* Unlike decNumber, parameterization takes place at compile time */
/* rather than at runtime. The parameters are set in the decDouble.c */
/* (etc.) files, which then include this one to produce the compiled */
/* code. The functions here, therefore, are code shared between */
/* multiple formats. */
/* ------------------------------------------------------------------ */
// Names here refer to decFloat rather than to decDouble, etc., and
// the functions are in strict alphabetical order.
// Constants, tables, and debug function(s) are included only for QUAD
// (which will always be compiled if DOUBLE or SINGLE are used).
//
// Whenever a decContext is used, only the status may be set (using
// OR) or the rounding mode read; all other fields are ignored and
// untouched.
// names for simpler testing and default context
#if DECPMAX==7
#define SINGLE 1
#define DOUBLE 0
#define QUAD 0
#define DEFCONTEXT DEC_INIT_DECIMAL32
#elif DECPMAX==16
#define SINGLE 0
#define DOUBLE 1
#define QUAD 0
#define DEFCONTEXT DEC_INIT_DECIMAL64
#elif DECPMAX==34
#define SINGLE 0
#define DOUBLE 0
#define QUAD 1
#define DEFCONTEXT DEC_INIT_DECIMAL128
#else
#error Unexpected DECPMAX value
#endif
/* Assertions */
#if DECPMAX!=7 && DECPMAX!=16 && DECPMAX!=34
#error Unexpected Pmax (DECPMAX) value for this module
#endif
// Assert facts about digit characters, etc.
#if ('9'&0x0f)!=9
#error This module assumes characters are of the form 0b....nnnn
// where .... are don't care 4 bits and nnnn is 0000 through 1001
#endif
#if ('9'&0xf0)==('.'&0xf0)
#error This module assumes '.' has a different mask than a digit
#endif
// Assert ToString lay-out conditions
#if DECSTRING<DECPMAX+9
#error ToString needs at least 8 characters for lead-in and dot
#endif
#if DECPMAX+DECEMAXD+5 > DECSTRING
#error Exponent form can be too long for ToString to lay out safely
#endif
#if DECEMAXD > 4
#error Exponent form is too long for ToString to lay out
// Note: code for up to 9 digits exists in archives [decOct]
#endif
/* Private functions used here and possibly in decBasic.c, etc. */
static
decFloat * decFinalize(decFloat *, bcdnum *, decContext *);
static
Flag decBiStr(
const
char
*,
const
char
*,
const
char
*);
/* Macros and private tables; those which are not format-dependent */
/* are only included if decQuad is being built. */
/* ------------------------------------------------------------------ */
/* Combination field lookup tables (uInts to save measurable work) */
/* */
/* DECCOMBEXP - 2 most-significant-bits of exponent (00, 01, or */
/* 10), shifted left for format, or DECFLOAT_Inf/NaN */
/* DECCOMBWEXP - The same, for the next-wider format (unless QUAD) */
/* DECCOMBMSD - 4-bit most-significant-digit */
/* [0 if the index is a special (Infinity or NaN)] */
/* DECCOMBFROM - 5-bit combination field from EXP top bits and MSD */
/* (placed in uInt so no shift is needed) */
/* */
/* DECCOMBEXP, DECCOMBWEXP, and DECCOMBMSD are indexed by the sign */
/* and 5-bit combination field (0-63, the second half of the table */
/* identical to the first half) */
/* DECCOMBFROM is indexed by expTopTwoBits*16 + msd */
/* */
/* DECCOMBMSD and DECCOMBFROM are not format-dependent and so are */
/* only included once, when QUAD is being built */
/* ------------------------------------------------------------------ */
static
const
uInt DECCOMBEXP[64]={
0, 0, 0, 0, 0, 0, 0, 0,
1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
0, 0, 1<<DECECONL, 1<<DECECONL,
2<<DECECONL, 2<<DECECONL, DECFLOAT_Inf, DECFLOAT_NaN,
0, 0, 0, 0, 0, 0, 0, 0,
1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
0, 0, 1<<DECECONL, 1<<DECECONL,
2<<DECECONL, 2<<DECECONL, DECFLOAT_Inf, DECFLOAT_NaN};
#if !QUAD
static
const
uInt DECCOMBWEXP[64]={
0, 0, 0, 0, 0, 0, 0, 0,
1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
0, 0, 1<<DECWECONL, 1<<DECWECONL,
2<<DECWECONL, 2<<DECWECONL, DECFLOAT_Inf, DECFLOAT_NaN,
0, 0, 0, 0, 0, 0, 0, 0,
1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
0, 0, 1<<DECWECONL, 1<<DECWECONL,
2<<DECWECONL, 2<<DECWECONL, DECFLOAT_Inf, DECFLOAT_NaN};
#endif
#if QUAD
const
uInt DECCOMBMSD[64]={
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, 0, 0,
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, 0, 0};
const
uInt DECCOMBFROM[48]={
0x00000000, 0x04000000, 0x08000000, 0x0C000000, 0x10000000, 0x14000000,
0x18000000, 0x1C000000, 0x60000000, 0x64000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x20000000, 0x24000000,
0x28000000, 0x2C000000, 0x30000000, 0x34000000, 0x38000000, 0x3C000000,
0x68000000, 0x6C000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x40000000, 0x44000000, 0x48000000, 0x4C000000,
0x50000000, 0x54000000, 0x58000000, 0x5C000000, 0x70000000, 0x74000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000};
/* ------------------------------------------------------------------ */
/* Request and include the tables to use for conversions */
/* ------------------------------------------------------------------ */
#define DEC_BCD2DPD 1 // 0-0x999 -> DPD
#define DEC_BIN2DPD 1 // 0-999 -> DPD
#define DEC_BIN2BCD8 1 // 0-999 -> ddd, len
#define DEC_DPD2BCD8 1 // DPD -> ddd, len
#define DEC_DPD2BIN 1 // DPD -> 0-999
#define DEC_DPD2BINK 1 // DPD -> 0-999000
#define DEC_DPD2BINM 1 // DPD -> 0-999000000
#include "decDPD.h" // source of the lookup tables
#endif
/* ----------------------------------------------------------------- */
/* decBiStr -- compare string with pairwise options */
/* */
/* targ is the string to compare */
/* str1 is one of the strings to compare against (length may be 0) */
/* str2 is the other; it must be the same length as str1 */
/* */
/* returns 1 if strings compare equal, (that is, targ is the same */
/* length as str1 and str2, and each character of targ is in one */
/* of str1 or str2 in the corresponding position), or 0 otherwise */
/* */
/* This is used for generic caseless compare, including the awkward */
/* case of the Turkish dotted and dotless Is. Use as (for example): */
/* if (decBiStr(test, "mike", "MIKE")) ... */
/* ----------------------------------------------------------------- */
static
Flag decBiStr(
const
char
*targ,
const
char
*str1,
const
char
*str2) {
for
(;;targ++, str1++, str2++) {
if
(*targ!=*str1 && *targ!=*str2)
return
0;
// *targ has a match in one (or both, if terminator)
if
(*targ==
'\0'
)
break
;
}
// forever
return
1;
}
// decBiStr
/* ------------------------------------------------------------------ */
/* decFinalize -- adjust and store a final result */
/* */
/* df is the decFloat format number which gets the final result */
/* num is the descriptor of the number to be checked and encoded */
/* [its values, including the coefficient, may be modified] */
/* set is the context to use */
/* returns df */
/* */
/* The num descriptor may point to a bcd8 string of any length; this */
/* string may have leading insignificant zeros. If it has more than */
/* DECPMAX digits then the final digit can be a round-for-reround */
/* digit (i.e., it may include a sticky bit residue). */
/* */
/* The exponent (q) may be one of the codes for a special value and */
/* can be up to 999999999 for conversion from string. */
/* */
/* No error is possible, but Inexact, Underflow, and/or Overflow may */
/* be set. */
/* ------------------------------------------------------------------ */
// Constant whose size varies with format; also the check for surprises
static
uByte allnines[DECPMAX]=
#if SINGLE
{9, 9, 9, 9, 9, 9, 9};
#elif DOUBLE
{9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9};
#elif QUAD
{9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9};
#endif
static
decFloat * decFinalize(decFloat *df, bcdnum *num,
decContext *set) {
uByte *ub;
// work
uInt dpd;
// ..
uInt uiwork;
// for macros
uByte *umsd=num->msd;
// local copy
uByte *ulsd=num->lsd;
// ..
uInt encode;
// encoding accumulator
Int length;
// coefficient length
#if DECCHECK
Int clen=ulsd-umsd+1;
#if QUAD
#define COEXTRA 2 // extra-long coefficent
#else
#define COEXTRA 0
#endif
if
(clen<1 || clen>DECPMAX*3+2+COEXTRA)
printf
(
"decFinalize: suspect coefficient [length=%ld]\n"
, (LI)clen);
if
(num->sign!=0 && num->sign!=DECFLOAT_Sign)
printf
(
"decFinalize: bad sign [%08lx]\n"
, (LI)num->sign);
if
(!EXPISSPECIAL(num->exponent)
&& (num->exponent>1999999999 || num->exponent<-1999999999))
printf
(
"decFinalize: improbable exponent [%ld]\n"
, (LI)num->exponent);
// decShowNum(num, "final");
#endif
// A special will have an 'exponent' which is very positive and a
// coefficient < DECPMAX
length=(uInt)(ulsd-umsd+1);
// coefficient length
if
(!NUMISSPECIAL(num)) {
Int drop;
// digits to be dropped
// skip leading insignificant zeros to calculate an exact length
// [this is quite expensive]
if
(*umsd==0) {
for
(; umsd+3<ulsd && UBTOUI(umsd)==0;) umsd+=4;
for
(; *umsd==0 && umsd<ulsd;) umsd++;
length=ulsd-umsd+1;
// recalculate
}
drop=MAXI(length-DECPMAX, DECQTINY-num->exponent);
// drop can now be > digits for bottom-clamp (subnormal) cases
if
(drop>0) {
// rounding needed
// (decFloatQuantize has very similar code to this, so any
// changes may need to be made there, too)
uByte *roundat;
// -> re-round digit
uByte reround;
// reround value
// printf("Rounding; drop=%ld\n", (LI)drop);
num->exponent+=drop;
// always update exponent
// Three cases here:
// 1. new LSD is in coefficient (almost always)
// 2. new LSD is digit to left of coefficient (so MSD is
// round-for-reround digit)
// 3. new LSD is to left of case 2 (whole coefficient is sticky)
// [duplicate check-stickies code to save a test]
// [by-digit check for stickies as runs of zeros are rare]
if
(drop<length) {
// NB lengths not addresses
roundat=umsd+length-drop;
reround=*roundat;
for
(ub=roundat+1; ub<=ulsd; ub++) {
if
(*ub!=0) {
// non-zero to be discarded
reround=DECSTICKYTAB[reround];
// apply sticky bit
break
;
// [remainder don't-care]
}
}
// check stickies
ulsd=roundat-1;
// new LSD
}
else
{
// edge case
if
(drop==length) {
roundat=umsd;
reround=*roundat;
}
else
{
roundat=umsd-1;
reround=0;
}
for
(ub=roundat+1; ub<=ulsd; ub++) {
if
(*ub!=0) {
// non-zero to be discarded
reround=DECSTICKYTAB[reround];
// apply sticky bit
break
;
// [remainder don't-care]
}
}
// check stickies
*umsd=0;
// coefficient is a 0
ulsd=umsd;
// ..
}
if
(reround!=0) {
// discarding non-zero
uInt bump=0;
set->status|=DEC_Inexact;
// if adjusted exponent [exp+digits-1] is < EMIN then num is
// subnormal -- so raise Underflow
if
(num->exponent<DECEMIN && (num->exponent+(ulsd-umsd+1)-1)<DECEMIN)
set->status|=DEC_Underflow;
// next decide whether increment of the coefficient is needed
if
(set->round==DEC_ROUND_HALF_EVEN) {
// fastpath slowest case
if
(reround>5) bump=1;
// >0.5 goes up
else
if
(reround==5)
// exactly 0.5000 ..
bump=*ulsd & 0x01;
// .. up iff [new] lsd is odd
}
// r-h-e
else
switch
(set->round) {
case
DEC_ROUND_DOWN: {
// no change
break
;}
// r-d
case
DEC_ROUND_HALF_DOWN: {
if
(reround>5) bump=1;
break
;}
// r-h-d
case
DEC_ROUND_HALF_UP: {
if
(reround>=5) bump=1;
break
;}
// r-h-u
case
DEC_ROUND_UP: {
if
(reround>0) bump=1;
break
;}
// r-u
case
DEC_ROUND_CEILING: {
// same as _UP for positive numbers, and as _DOWN for negatives
if
(!num->sign && reround>0) bump=1;
break
;}
// r-c
case
DEC_ROUND_FLOOR: {
// same as _UP for negative numbers, and as _DOWN for positive
// [negative reround cannot occur on 0]
if
(num->sign && reround>0) bump=1;
break
;}
// r-f
case
DEC_ROUND_05UP: {
if
(reround>0) {
// anything out there is 'sticky'
// bump iff lsd=0 or 5; this cannot carry so it could be
// effected immediately with no bump -- but the code
// is clearer if this is done the same way as the others
if
(*ulsd==0 || *ulsd==5) bump=1;
}
break
;}
// r-r
default
: {
// e.g., DEC_ROUND_MAX
set->status|=DEC_Invalid_context;
#if DECCHECK
printf
(
"Unknown rounding mode: %ld\n"
, (LI)set->round);
#endif
break
;}
}
// switch (not r-h-e)
// printf("ReRound: %ld bump: %ld\n", (LI)reround, (LI)bump);
if
(bump!=0) {
// need increment
// increment the coefficient; this might end up with 1000...
// (after the all nines case)
ub=ulsd;
for
(; ub-3>=umsd && UBTOUI(ub-3)==0x09090909; ub-=4) {
UBFROMUI(ub-3, 0);
// to 00000000
}
// [note ub could now be to left of msd, and it is not safe
// to write to the the left of the msd]
// now at most 3 digits left to non-9 (usually just the one)
for
(; ub>=umsd; *ub=0, ub--) {
if
(*ub==9)
continue
;
// carry
*ub+=1;
break
;
}
if
(ub<umsd) {
// had all-nines
*umsd=1;
// coefficient to 1000...
// usually the 1000... coefficient can be used as-is
if
((ulsd-umsd+1)==DECPMAX) {
num->exponent++;
}
else
{
// if coefficient is shorter than Pmax then num is
// subnormal, so extend it; this is safe as drop>0
// (or, if the coefficient was supplied above, it could
// not be 9); this may make the result normal.
ulsd++;
*ulsd=0;
// [exponent unchanged]
#if DECCHECK
if
(num->exponent!=DECQTINY)
// sanity check
printf
(
"decFinalize: bad all-nines extend [^%ld, %ld]\n"
,
(LI)num->exponent, (LI)(ulsd-umsd+1));
#endif
}
// subnormal extend
}
// had all-nines
}
// bump needed
}
// inexact rounding
length=ulsd-umsd+1;
// recalculate (may be <DECPMAX)
}
// need round (drop>0)
// The coefficient will now fit and has final length unless overflow
// decShowNum(num, "rounded");
// if exponent is >=emax may have to clamp, overflow, or fold-down
if
(num->exponent>DECEMAX-(DECPMAX-1)) {
// is edge case
// printf("overflow checks...\n");
if
(*ulsd==0 && ulsd==umsd) {
// have zero
num->exponent=DECEMAX-(DECPMAX-1);
// clamp to max
}
else
if
((num->exponent+length-1)>DECEMAX) {
// > Nmax
// Overflow -- these could go straight to encoding, here, but
// instead num is adjusted to keep the code cleaner
Flag needmax=0;
// 1 for finite result
set->status|=(DEC_Overflow | DEC_Inexact);
switch
(set->round) {
case
DEC_ROUND_DOWN: {
needmax=1;
// never Infinity
break
;}
// r-d
case
DEC_ROUND_05UP: {
needmax=1;
// never Infinity
break
;}
// r-05
case
DEC_ROUND_CEILING: {
if
(num->sign) needmax=1;
// Infinity iff non-negative
break
;}
// r-c
case
DEC_ROUND_FLOOR: {
if
(!num->sign) needmax=1;
// Infinity iff negative
break
;}
// r-f
default
:
break
;
// Infinity in all other cases
}
if
(!needmax) {
// easy .. set Infinity
num->exponent=DECFLOAT_Inf;
*umsd=0;
// be clean: coefficient to 0
ulsd=umsd;
// ..
}
else
{
// return Nmax
umsd=allnines;
// use constant array
ulsd=allnines+DECPMAX-1;
num->exponent=DECEMAX-(DECPMAX-1);
}
}
else
{
// no overflow but non-zero and may have to fold-down
Int shift=num->exponent-(DECEMAX-(DECPMAX-1));
if
(shift>0) {
// fold-down needed
// fold down needed; must copy to buffer in order to pad
// with zeros safely; fortunately this is not the worst case
// path because cannot have had a round
uByte buffer[ROUNDUP(DECPMAX+3, 4)];
// [+3 allows uInt padding]
uByte *s=umsd;
// source
uByte *t=buffer;
// safe target
uByte *tlsd=buffer+(ulsd-umsd)+shift;
// target LSD
// printf("folddown shift=%ld\n", (LI)shift);
for
(; s<=ulsd; s+=4, t+=4) UBFROMUI(t, UBTOUI(s));
for
(t=tlsd-shift+1; t<=tlsd; t+=4) UBFROMUI(t, 0);
// pad 0s
num->exponent-=shift;
umsd=buffer;
ulsd=tlsd;
}
}
// fold-down?
length=ulsd-umsd+1;
// recalculate length
}
// high-end edge case
}
// finite number
/*------------------------------------------------------------------*/
/* At this point the result will properly fit the decFloat */
/* encoding, and it can be encoded with no possibility of error */
/*------------------------------------------------------------------*/
// Following code does not alter coefficient (could be allnines array)
// fast path possible when DECPMAX digits
if
(length==DECPMAX) {
return
decFloatFromBCD(df, num->exponent, umsd, num->sign);
}
// full-length
// slower path when not a full-length number; must care about length
// [coefficient length here will be < DECPMAX]
if
(!NUMISSPECIAL(num)) {
// is still finite
// encode the combination field and exponent continuation
uInt uexp=(uInt)(num->exponent+DECBIAS);
// biased exponent
uInt code=(uexp>>DECECONL)<<4;
// top two bits of exp
// [msd==0]
// look up the combination field and make high word
encode=DECCOMBFROM[code];
// indexed by (0-2)*16+msd
encode|=(uexp<<(32-6-DECECONL)) & 0x03ffffff;
// exponent continuation
}
else
encode=num->exponent;
// special [already in word]
encode|=num->sign;
// add sign
// private macro to extract a declet, n (where 0<=n<DECLETS and 0
// refers to the declet from the least significant three digits)
// and put the corresponding DPD code into dpd. Access to umsd and
// ulsd (pointers to the most and least significant digit of the
// variable-length coefficient) is assumed, along with use of a
// working pointer, uInt *ub.
// As not full-length then chances are there are many leading zeros
// [and there may be a partial triad]
#define getDPDt(dpd, n) ub=ulsd-(3*(n))-2; \
if
(ub<umsd-2) dpd=0; \
else
if
(ub>=umsd) dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)]; \
else
{dpd=*(ub+2);
if
(ub+1==umsd) dpd+=*(ub+1)*16; dpd=BCD2DPD[dpd];}
// place the declets in the encoding words and copy to result (df),
// according to endianness; in all cases complete the sign word
// first
#if DECPMAX==7
getDPDt(dpd, 1);
encode|=dpd<<10;
getDPDt(dpd, 0);
encode|=dpd;
DFWORD(df, 0)=encode;
// just the one word
#elif DECPMAX==16
getDPDt(dpd, 4); encode|=dpd<<8;
getDPDt(dpd, 3); encode|=dpd>>2;
DFWORD(df, 0)=encode;
encode=dpd<<30;
getDPDt(dpd, 2); encode|=dpd<<20;
getDPDt(dpd, 1); encode|=dpd<<10;
getDPDt(dpd, 0); encode|=dpd;
DFWORD(df, 1)=encode;
#elif DECPMAX==34
getDPDt(dpd,10); encode|=dpd<<4;
getDPDt(dpd, 9); encode|=dpd>>6;
DFWORD(df, 0)=encode;
encode=dpd<<26;
getDPDt(dpd, 8); encode|=dpd<<16;
getDPDt(dpd, 7); encode|=dpd<<6;
getDPDt(dpd, 6); encode|=dpd>>4;
DFWORD(df, 1)=encode;
encode=dpd<<28;
getDPDt(dpd, 5); encode|=dpd<<18;
getDPDt(dpd, 4); encode|=dpd<<8;
getDPDt(dpd, 3); encode|=dpd>>2;
DFWORD(df, 2)=encode;
encode=dpd<<30;
getDPDt(dpd, 2); encode|=dpd<<20;
getDPDt(dpd, 1); encode|=dpd<<10;
getDPDt(dpd, 0); encode|=dpd;
DFWORD(df, 3)=encode;
#endif
// printf("Status: %08lx\n", (LI)set->status);
// decFloatShow(df, "final2");
return
df;
}
// decFinalize
/* ------------------------------------------------------------------ */
/* decFloatFromBCD -- set decFloat from exponent, BCD8, and sign */
/* */
/* df is the target decFloat */
/* exp is the in-range unbiased exponent, q, or a special value in */
/* the form returned by decFloatGetExponent */
/* bcdar holds DECPMAX digits to set the coefficient from, one */
/* digit in each byte (BCD8 encoding); the first (MSD) is ignored */
/* if df is a NaN; all are ignored if df is infinite. */
/* All bytes must be in 0-9; results are undefined otherwise. */
/* sig is DECFLOAT_Sign to set the sign bit, 0 otherwise */
/* returns df, which will be canonical */
/* */
/* No error is possible, and no status will be set. */
/* ------------------------------------------------------------------ */
decFloat * decFloatFromBCD(decFloat *df, Int
exp
,
const
uByte *bcdar,
Int sig) {
uInt encode, dpd;
// work
const
uByte *ub;
// ..
if
(EXPISSPECIAL(
exp
)) encode=
exp
|sig;
// specials already encoded
else
{
// is finite
// encode the combination field and exponent continuation
uInt uexp=(uInt)(
exp
+DECBIAS);
// biased exponent
uInt code=(uexp>>DECECONL)<<4;
// top two bits of exp
code+=bcdar[0];
// add msd
// look up the combination field and make high word
encode=DECCOMBFROM[code]|sig;
// indexed by (0-2)*16+msd
encode|=(uexp<<(32-6-DECECONL)) & 0x03ffffff;
// exponent continuation
}
// private macro to extract a declet, n (where 0<=n<DECLETS and 0
// refers to the declet from the least significant three digits)
// and put the corresponding DPD code into dpd.
// Use of a working pointer, uInt *ub, is assumed.
#define getDPDb(dpd, n) ub=bcdar+DECPMAX-1-(3*(n))-2; \
dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)];
// place the declets in the encoding words and copy to result (df),
// according to endianness; in all cases complete the sign word
// first
#if DECPMAX==7
getDPDb(dpd, 1);
encode|=dpd<<10;
getDPDb(dpd, 0);
encode|=dpd;
DFWORD(df, 0)=encode;
// just the one word
#elif DECPMAX==16
getDPDb(dpd, 4); encode|=dpd<<8;
getDPDb(dpd, 3); encode|=dpd>>2;
DFWORD(df, 0)=encode;
encode=dpd<<30;
getDPDb(dpd, 2); encode|=dpd<<20;
getDPDb(dpd, 1); encode|=dpd<<10;
getDPDb(dpd, 0); encode|=dpd;
DFWORD(df, 1)=encode;
#elif DECPMAX==34
getDPDb(dpd,10); encode|=dpd<<4;
getDPDb(dpd, 9); encode|=dpd>>6;
DFWORD(df, 0)=encode;
encode=dpd<<26;
getDPDb(dpd, 8); encode|=dpd<<16;
getDPDb(dpd, 7); encode|=dpd<<6;
getDPDb(dpd, 6); encode|=dpd>>4;
DFWORD(df, 1)=encode;
encode=dpd<<28;
getDPDb(dpd, 5); encode|=dpd<<18;
getDPDb(dpd, 4); encode|=dpd<<8;
getDPDb(dpd, 3); encode|=dpd>>2;
DFWORD(df, 2)=encode;
encode=dpd<<30;
getDPDb(dpd, 2); encode|=dpd<<20;
getDPDb(dpd, 1); encode|=dpd<<10;
getDPDb(dpd, 0); encode|=dpd;
DFWORD(df, 3)=encode;
#endif
// decFloatShow(df, "fromB");
return
df;
}
// decFloatFromBCD
/* ------------------------------------------------------------------ */
/* decFloatFromPacked -- set decFloat from exponent and packed BCD */
/* */
/* df is the target decFloat */
/* exp is the in-range unbiased exponent, q, or a special value in */
/* the form returned by decFloatGetExponent */
/* packed holds DECPMAX packed decimal digits plus a sign nibble */
/* (all 6 codes are OK); the first (MSD) is ignored if df is a NaN */
/* and all except sign are ignored if df is infinite. For DOUBLE */
/* and QUAD the first (pad) nibble is also ignored in all cases. */
/* All coefficient nibbles must be in 0-9 and sign in A-F; results */
/* are undefined otherwise. */
/* returns df, which will be canonical */
/* */
/* No error is possible, and no status will be set. */
/* ------------------------------------------------------------------ */
decFloat * decFloatFromPacked(decFloat *df, Int
exp
,
const
uByte *packed) {
uByte bcdar[DECPMAX+2];
// work [+1 for pad, +1 for sign]
const
uByte *ip;
// ..
uByte *op;
// ..
Int sig=0;
// sign
// expand coefficient and sign to BCDAR
#if SINGLE
op=bcdar+1;
// no pad digit
#else
op=bcdar;
// first (pad) digit ignored
#endif
for
(ip=packed; ip<packed+((DECPMAX+2)/2); ip++) {
*op++=*ip>>4;
*op++=(uByte)(*ip&0x0f);
// [final nibble is sign]
}
op--;
// -> sign byte
if
(*op==DECPMINUS || *op==DECPMINUSALT) sig=DECFLOAT_Sign;
if
(EXPISSPECIAL(
exp
)) {
// Infinity or NaN
if
(!EXPISINF(
exp
)) bcdar[1]=0;
// a NaN: ignore MSD
else
memset
(bcdar+1, 0, DECPMAX);
// Infinite: coefficient to 0
}
return
decFloatFromBCD(df,
exp
, bcdar+1, sig);
}
// decFloatFromPacked
/* ------------------------------------------------------------------ */
/* decFloatFromPackedChecked -- set from exponent and packed; checked */
/* */
/* df is the target decFloat */
/* exp is the in-range unbiased exponent, q, or a special value in */
/* the form returned by decFloatGetExponent */
/* packed holds DECPMAX packed decimal digits plus a sign nibble */
/* (all 6 codes are OK); the first (MSD) must be 0 if df is a NaN */
/* and all digits must be 0 if df is infinite. For DOUBLE and */
/* QUAD the first (pad) nibble must be 0. */
/* All coefficient nibbles must be in 0-9 and sign in A-F. */
/* returns df, which will be canonical or NULL if any of the */
/* requirements are not met (if this case df is unchanged); that */
/* is, the input data must be as returned by decFloatToPacked, */
/* except that all six sign codes are acccepted. */
/* */
/* No status will be set. */
/* ------------------------------------------------------------------ */
decFloat * decFloatFromPackedChecked(decFloat *df, Int
exp
,
const
uByte *packed) {
uByte bcdar[DECPMAX+2];
// work [+1 for pad, +1 for sign]
const
uByte *ip;
// ..
uByte *op;
// ..
Int sig=0;
// sign
// expand coefficient and sign to BCDAR
#if SINGLE
op=bcdar+1;
// no pad digit
#else
op=bcdar;
// first (pad) digit here
#endif
for
(ip=packed; ip<packed+((DECPMAX+2)/2); ip++) {
*op=*ip>>4;
if
(*op>9)
return
NULL;
op++;
*op=(uByte)(*ip&0x0f);
// [final nibble is sign]
if
(*op>9 && ip<packed+((DECPMAX+2)/2)-1)
return
NULL;
op++;
}
op--;
// -> sign byte
if
(*op<=9)
return
NULL;
// bad sign
if
(*op==DECPMINUS || *op==DECPMINUSALT) sig=DECFLOAT_Sign;
#if !SINGLE
if
(bcdar[0]!=0)
return
NULL;
// bad pad nibble
#endif
if
(EXPISNAN(
exp
)) {
// a NaN
if
(bcdar[1]!=0)
return
NULL;
// bad msd
}
// NaN
else
if
(EXPISINF(
exp
)) {
// is infinite
Int i;
for
(i=0; i<DECPMAX; i++) {
if
(bcdar[i+1]!=0)
return
NULL;
// should be all zeros
}
}
// infinity
else
{
// finite
// check the exponent is in range
if
(
exp
>DECEMAX-DECPMAX+1)
return
NULL;
if
(
exp
<DECEMIN-DECPMAX+1)
return
NULL;
}
return
decFloatFromBCD(df,
exp
, bcdar+1, sig);
}
// decFloatFromPacked
/* ------------------------------------------------------------------ */
/* decFloatFromString -- conversion from numeric string */
/* */
/* result is the decFloat format number which gets the result of */
/* the conversion */
/* *string is the character string which should contain a valid */
/* number (which may be a special value), \0-terminated */
/* If there are too many significant digits in the */
/* coefficient it will be rounded. */
/* set is the context */
/* returns result */
/* */
/* The length of the coefficient and the size of the exponent are */
/* checked by this routine, so the correct error (Underflow or */
/* Overflow) can be reported or rounding applied, as necessary. */
/* */
/* There is no limit to the coefficient length for finite inputs; */
/* NaN payloads must be integers with no more than DECPMAX-1 digits. */
/* Exponents may have up to nine significant digits. */
/* */
/* If bad syntax is detected, the result will be a quiet NaN. */
/* ------------------------------------------------------------------ */
decFloat * decFloatFromString(decFloat *result,
const
char
*string,
decContext *set) {
Int digits;
// count of digits in coefficient
const
char
*dotchar=NULL;
// where dot was found [NULL if none]
const
char
*cfirst=string;
// -> first character of decimal part
const
char
*c;
// work
uByte *ub;
// ..
uInt uiwork;
// for macros
bcdnum num;
// collects data for finishing
uInt error=DEC_Conversion_syntax;
// assume the worst
uByte buffer[ROUNDUP(DECSTRING+11, 8)];
// room for most coefficents,
// some common rounding, +3, & pad
#if DECTRACE
// printf("FromString %s ...\n", string);
#endif
for
(;;) {
// once-only 'loop'
num.sign=0;
// assume non-negative
num.msd=buffer;
// MSD is here always
// detect and validate the coefficient, including any leading,
// trailing, or embedded '.'
// [could test four-at-a-time here (saving 10% for decQuads),
// but that risks storage violation because the position of the
// terminator is unknown]
for
(c=string;; c++) {
// -> input character
if
(((unsigned)(*c-
'0'
))<=9)
continue
;
// '0' through '9' is good
if
(*c==
'\0'
)
break
;
// most common non-digit
if
(*c==
'.'
) {
if
(dotchar!=NULL)
break
;
// not first '.'
dotchar=c;
// record offset into decimal part
continue
;}
if
(c==string) {
// first in string...
if
(*c==
'-'
) {
// valid - sign
cfirst++;
num.sign=DECFLOAT_Sign;
continue
;}
if
(*c==
'+'
) {
// valid + sign
cfirst++;
continue
;}
}
// *c is not a digit, terminator, or a valid +, -, or '.'
break
;
}
// c loop
digits=(uInt)(c-cfirst);
// digits (+1 if a dot)
if
(digits>0) {
// had digits and/or dot
const
char
*clast=c-1;
// note last coefficient char position
Int
exp
=0;
// exponent accumulator
if
(*c!=
'\0'
) {
// something follows the coefficient
uInt edig;
// unsigned work
// had some digits and more to come; expect E[+|-]nnn now
const
char
*firstexp;
// exponent first non-zero
if
(*c!=
'E'
&& *c!=
'e'
)
break
;
c++;
// to (optional) sign
if
(*c==
'-'
|| *c==
'+'
) c++;
// step over sign (c=clast+2)
if
(*c==
'\0'
)
break
;
// no digits! (e.g., '1.2E')
for
(; *c==
'0'
;) c++;
// skip leading zeros [even last]
firstexp=c;
// remember start [maybe '\0']
// gather exponent digits
edig=(uInt)*c-(uInt)
'0'
;
if
(edig<=9) {
// [check not bad or terminator]
exp
+=edig;
// avoid initial X10
c++;
for
(;; c++) {
edig=(uInt)*c-(uInt)
'0'
;
if
(edig>9)
break
;
exp
=
exp
*10+edig;
}
}
// if not now on the '\0', *c must not be a digit
if
(*c!=
'\0'
)
break
;
// (this next test must be after the syntax checks)
// if definitely more than the possible digits for format then
// the exponent may have wrapped, so simply set it to a certain
// over/underflow value
if
(c>firstexp+DECEMAXD)
exp
=DECEMAX*2;
if
(*(clast+2)==
'-'
)
exp
=-
exp
;
// was negative
}
// exponent part
if
(dotchar!=NULL) {
// had a '.'
digits--;
// remove from digits count
if
(digits==0)
break
;
// was dot alone: bad syntax
exp
-=(Int)(clast-dotchar);
// adjust exponent
// [the '.' can now be ignored]
}
num.exponent=
exp
;
// exponent is good; store it
// Here when whole string has been inspected and syntax is good
// cfirst->first digit or dot, clast->last digit or dot
error=0;
// no error possible now
// if the number of digits in the coefficient will fit in buffer
// then it can simply be converted to bcd8 and copied -- decFinalize
// will take care of leading zeros and rounding; the buffer is big
// enough for all canonical coefficients, including 0.00000nn...
ub=buffer;
if
(digits<=(Int)(
sizeof
(buffer)-3)) {
// [-3 allows by-4s copy]
c=cfirst;
if
(dotchar!=NULL) {
// a dot to worry about
if
(*(c+1)==
'.'
) {
// common canonical case
*ub++=(uByte)(*c-
'0'
);
// copy leading digit
c+=2;
// prepare to handle rest
}
else
for
(; c<=clast;) {
// '.' could be anywhere
// as usual, go by fours when safe; NB it has been asserted
// that a '.' does not have the same mask as a digit
if
(c<=clast-3
// safe for four
&& (UBTOUI(c)&0xf0f0f0f0)==CHARMASK) {
// test four
UBFROMUI(ub, UBTOUI(c)&0x0f0f0f0f);
// to BCD8
ub+=4;
c+=4;
continue
;
}
if
(*c==
'.'
) {
// found the dot
c++;
// step over it ..
break
;
// .. and handle the rest
}
*ub++=(uByte)(*c++-
'0'
);
}
}
// had dot
// Now no dot; do this by fours (where safe)
for
(; c<=clast-3; c+=4, ub+=4) UBFROMUI(ub, UBTOUI(c)&0x0f0f0f0f);
for
(; c<=clast; c++, ub++) *ub=(uByte)(*c-
'0'
);
num.lsd=buffer+digits-1;
// record new LSD
}
// fits
else
{
// too long for buffer
// [This is a rare and unusual case; arbitrary-length input]
// strip leading zeros [but leave final 0 if all 0's]
if
(*cfirst==
'.'
) cfirst++;
// step past dot at start
if
(*cfirst==
'0'
) {
// [cfirst always -> digit]
for
(; cfirst<clast; cfirst++) {
if
(*cfirst!=
'0'
) {
// non-zero found
if
(*cfirst==
'.'
)
continue
;
// [ignore]
break
;
// done
}
digits--;
// 0 stripped
}
// cfirst
}
// at least one leading 0
// the coefficient is now as short as possible, but may still
// be too long; copy up to Pmax+1 digits to the buffer, then
// just record any non-zeros (set round-for-reround digit)
for
(c=cfirst; c<=clast && ub<=buffer+DECPMAX; c++) {
// (see commentary just above)
if
(c<=clast-3
// safe for four
&& (UBTOUI(c)&0xf0f0f0f0)==CHARMASK) {
// four digits
UBFROMUI(ub, UBTOUI(c)&0x0f0f0f0f);
// to BCD8
ub+=4;
c+=3;
// [will become 4]
continue
;
}
if
(*c==
'.'
)
continue
;
// [ignore]
*ub++=(uByte)(*c-
'0'
);
}
ub--;
// -> LSD
for
(; c<=clast; c++) {
// inspect remaining chars
if
(*c!=
'0'
) {
// sticky bit needed
if
(*c==
'.'
)
continue
;
// [ignore]
*ub=DECSTICKYTAB[*ub];
// update round-for-reround
break
;
// no need to look at more
}
}
num.lsd=ub;
// record LSD
// adjust exponent for dropped digits
num.exponent+=digits-(Int)(ub-buffer+1);
}
// too long for buffer
}
// digits and/or dot
else
{
// no digits or dot were found
// only Infinities and NaNs are allowed, here
if
(*c==
'\0'
)
break
;
// nothing there is bad
buffer[0]=0;
// default a coefficient of 0
num.lsd=buffer;
// ..
if
(decBiStr(c,
"infinity"
,
"INFINITY"
)
|| decBiStr(c,
"inf"
,
"INF"
)) num.exponent=DECFLOAT_Inf;
else
{
// should be a NaN
num.exponent=DECFLOAT_qNaN;
// assume quiet NaN
if
(*c==
's'
|| *c==
'S'
) {
// probably an sNaN
num.exponent=DECFLOAT_sNaN;
// effect the 's'
c++;
// and step over it
}
if
(*c!=
'N'
&& *c!=
'n'
)
break
;
// check caseless "NaN"
c++;
if
(*c!=
'a'
&& *c!=
'A'
)
break
;
// ..
c++;
if
(*c!=
'N'
&& *c!=
'n'
)
break
;
// ..
c++;
// now either nothing, or nnnn payload (no dots), expected
// -> start of integer, and skip leading 0s [including plain 0]
for
(cfirst=c; *cfirst==
'0'
;) cfirst++;
if
(*cfirst!=
'\0'
) {
// not empty or all-0, payload
// payload found; check all valid digits and copy to buffer as bcd8
ub=buffer;
for
(c=cfirst;; c++, ub++) {
if
((unsigned)(*c-
'0'
)>9)
break
;
// quit if not 0-9
if
(c-cfirst==DECPMAX-1)
break
;
// too many digits
*ub=(uByte)(*c-
'0'
);
// good bcd8
}
if
(*c!=
'\0'
)
break
;
// not all digits, or too many
num.lsd=ub-1;
// record new LSD
}
}
// NaN or sNaN
error=0;
// syntax is OK
}
// digits=0 (special expected)
break
;
// drop out
}
// [for(;;) once-loop]
// decShowNum(&num, "fromStr");
if
(error!=0) {
set->status|=error;
num.exponent=DECFLOAT_qNaN;
// set up quiet NaN
num.sign=0;
// .. with 0 sign
buffer[0]=0;
// .. and coefficient
num.lsd=buffer;
// ..
// decShowNum(&num, "oops");
}
// decShowNum(&num, "dffs");
decFinalize(result, &num, set);
// round, check, and lay out
// decFloatShow(result, "fromString");
return
result;
}
// decFloatFromString
/* ------------------------------------------------------------------ */
/* decFloatFromWider -- conversion from next-wider format */
/* */
/* result is the decFloat format number which gets the result of */
/* the conversion */
/* wider is the decFloatWider format number which will be narrowed */
/* set is the context */
/* returns result */
/* */
/* Narrowing can cause rounding, overflow, etc., but not Invalid */
/* operation (sNaNs are copied and do not signal). */
/* ------------------------------------------------------------------ */
// narrow-to is not possible for decQuad format numbers; simply omit
#if !QUAD
decFloat * decFloatFromWider(decFloat *result,
const
decFloatWider *wider,
decContext *set) {
bcdnum num;
// collects data for finishing
uByte bcdar[DECWPMAX];
// room for wider coefficient
uInt widerhi=DFWWORD(wider, 0);
// top word
Int
exp
;
GETWCOEFF(wider, bcdar);
num.msd=bcdar;
// MSD is here always
num.lsd=bcdar+DECWPMAX-1;
// LSD is here always
num.sign=widerhi&0x80000000;
// extract sign [DECFLOAT_Sign=Neg]
// decode the wider combination field to exponent
exp
=DECCOMBWEXP[widerhi>>26];
// decode from wider combination field
// if it is a special there's nothing to do unless sNaN; if it's
// finite then add the (wider) exponent continuation and unbias
if
(EXPISSPECIAL(
exp
))
exp
=widerhi&0x7e000000;
// include sNaN selector
else
exp
+=GETWECON(wider)-DECWBIAS;
num.exponent=
exp
;
// decShowNum(&num, "dffw");
return
decFinalize(result, &num, set);
// round, check, and lay out
}
// decFloatFromWider
#endif
/* ------------------------------------------------------------------ */
/* decFloatGetCoefficient -- get coefficient as BCD8 */
/* */
/* df is the decFloat from which to extract the coefficient */
/* bcdar is where DECPMAX bytes will be written, one BCD digit in */
/* each byte (BCD8 encoding); if df is a NaN the first byte will */
/* be zero, and if it is infinite they will all be zero */
/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */
/* 0 otherwise) */
/* */
/* No error is possible, and no status will be set. If df is a */
/* special value the array is set to zeros (for Infinity) or to the */
/* payload of a qNaN or sNaN. */
/* ------------------------------------------------------------------ */
Int decFloatGetCoefficient(
const
decFloat *df, uByte *bcdar) {
if
(DFISINF(df))
memset
(bcdar, 0, DECPMAX);
else
{
GETCOEFF(df, bcdar);
// use macro
if
(DFISNAN(df)) bcdar[0]=0;
// MSD needs correcting
}
return
GETSIGN(df);
}
// decFloatGetCoefficient
/* ------------------------------------------------------------------ */
/* decFloatGetExponent -- get unbiased exponent */
/* */
/* df is the decFloat from which to extract the exponent */
/* returns the exponent, q. */
/* */
/* No error is possible, and no status will be set. If df is a */
/* special value the first seven bits of the decFloat are returned, */
/* left adjusted and with the first (sign) bit set to 0 (followed by */
/* 25 0 bits). e.g., -sNaN would return 0x7e000000 (DECFLOAT_sNaN). */
/* ------------------------------------------------------------------ */
Int decFloatGetExponent(
const
decFloat *df) {
if
(DFISSPECIAL(df))
return
DFWORD(df, 0)&0x7e000000;
return
GETEXPUN(df);
}
// decFloatGetExponent
/* ------------------------------------------------------------------ */
/* decFloatSetCoefficient -- set coefficient from BCD8 */
/* */
/* df is the target decFloat (and source of exponent/special value) */
/* bcdar holds DECPMAX digits to set the coefficient from, one */
/* digit in each byte (BCD8 encoding); the first (MSD) is ignored */
/* if df is a NaN; all are ignored if df is infinite. */
/* sig is DECFLOAT_Sign to set the sign bit, 0 otherwise */
/* returns df, which will be canonical */
/* */
/* No error is possible, and no status will be set. */
/* ------------------------------------------------------------------ */
decFloat * decFloatSetCoefficient(decFloat *df,
const
uByte *bcdar,
Int sig) {
uInt
exp
;
// for exponent
uByte bcdzero[DECPMAX];
// for infinities
// Exponent/special code is extracted from df
if
(DFISSPECIAL(df)) {
exp
=DFWORD(df, 0)&0x7e000000;
if
(DFISINF(df)) {
memset
(bcdzero, 0, DECPMAX);
return
decFloatFromBCD(df,
exp
, bcdzero, sig);
}
}
else
exp
=GETEXPUN(df);
return
decFloatFromBCD(df,
exp
, bcdar, sig);
}
// decFloatSetCoefficient
/* ------------------------------------------------------------------ */
/* decFloatSetExponent -- set exponent or special value */
/* */
/* df is the target decFloat (and source of coefficient/payload) */
/* set is the context for reporting status */
/* exp is the unbiased exponent, q, or a special value in the form */
/* returned by decFloatGetExponent */
/* returns df, which will be canonical */
/* */
/* No error is possible, but Overflow or Underflow might occur. */
/* ------------------------------------------------------------------ */
decFloat * decFloatSetExponent(decFloat *df, decContext *set, Int
exp
) {
uByte bcdcopy[DECPMAX];
// for coefficient
bcdnum num;
// work
num.exponent=
exp
;
num.sign=decFloatGetCoefficient(df, bcdcopy);
// extract coefficient
if
(DFISSPECIAL(df)) {
// MSD or more needs correcting
if
(DFISINF(df))
memset
(bcdcopy, 0, DECPMAX);
bcdcopy[0]=0;
}
num.msd=bcdcopy;
num.lsd=bcdcopy+DECPMAX-1;
return
decFinalize(df, &num, set);
}
// decFloatSetExponent
/* ------------------------------------------------------------------ */
/* decFloatRadix -- returns the base (10) */
/* */
/* df is any decFloat of this format */
/* ------------------------------------------------------------------ */
uInt decFloatRadix(
const
decFloat *df) {
if
(df)
return
10;
// to placate compiler
return
10;
}
// decFloatRadix
/* The following function is not available if DECPRINT=0 */
#if DECPRINT
/* ------------------------------------------------------------------ */
/* decFloatShow -- printf a decFloat in hexadecimal and decimal */
/* df is the decFloat to show */
/* tag is a tag string displayed with the number */
/* */
/* This is a debug aid; the precise format of the string may change. */
/* ------------------------------------------------------------------ */
void
decFloatShow(
const
decFloat *df,
const
char
*tag) {
char
hexbuf[DECBYTES*2+DECBYTES/4+1];
// NB blank after every fourth
char
buff[DECSTRING];
// for value in decimal
Int i, j=0;
for
(i=0; i<DECBYTES; i++) {
#if DECLITEND
sprintf
(&hexbuf[j],
"%02x"
, df->bytes[DECBYTES-1-i]);
#else
sprintf
(&hexbuf[j],
"%02x"
, df->bytes[i]);
#endif
j+=2;
// the next line adds blank (and terminator) after final pair, too
if
((i+1)%4==0) {
strcpy
(&hexbuf[j],
" "
); j++;}
}
decFloatToString(df, buff);
printf
(
">%s> %s [big-endian] %s\n"
, tag, hexbuf, buff);
return
;
}
// decFloatShow
#endif
/* ------------------------------------------------------------------ */
/* decFloatToBCD -- get sign, exponent, and BCD8 from a decFloat */
/* */
/* df is the source decFloat */
/* exp will be set to the unbiased exponent, q, or to a special */
/* value in the form returned by decFloatGetExponent */
/* bcdar is where DECPMAX bytes will be written, one BCD digit in */
/* each byte (BCD8 encoding); if df is a NaN the first byte will */
/* be zero, and if it is infinite they will all be zero */
/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */
/* 0 otherwise) */
/* */
/* No error is possible, and no status will be set. */
/* ------------------------------------------------------------------ */
Int decFloatToBCD(
const
decFloat *df, Int *
exp
, uByte *bcdar) {
if
(DFISINF(df)) {
memset
(bcdar, 0, DECPMAX);
*
exp
=DFWORD(df, 0)&0x7e000000;
}
else
{
GETCOEFF(df, bcdar);
// use macro
if
(DFISNAN(df)) {
bcdar[0]=0;
// MSD needs correcting
*
exp
=DFWORD(df, 0)&0x7e000000;
}
else
{
// finite
*
exp
=GETEXPUN(df);
}
}
return
GETSIGN(df);
}
// decFloatToBCD
/* ------------------------------------------------------------------ */
/* decFloatToEngString -- conversion to numeric string, engineering */
/* */
/* df is the decFloat format number to convert */
/* string is the string where the result will be laid out */
/* */
/* string must be at least DECPMAX+9 characters (the worst case is */
/* "-0.00000nnn...nnn\0", which is as long as the exponent form when */
/* DECEMAXD<=4); this condition is asserted above */
/* */
/* No error is possible, and no status will be set */
/* ------------------------------------------------------------------ */
char
* decFloatToEngString(
const
decFloat *df,
char
*string){
uInt msd;
// coefficient MSD
Int
exp
;
// exponent top two bits or full
uInt comb;
// combination field
char
*cstart;
// coefficient start
char
*c;
// output pointer in string
char
*s, *t;
// .. (source, target)
Int pre, e;
// work
const
uByte *u;
// ..
uInt uiwork;
// for macros [one compiler needs
// volatile here to avoid bug, but
// that doubles execution time]
// Source words; macro handles endianness
uInt sourhi=DFWORD(df, 0);
// word with sign
#if DECPMAX==16
uInt sourlo=DFWORD(df, 1);
#elif DECPMAX==34
uInt sourmh=DFWORD(df, 1);
uInt sourml=DFWORD(df, 2);
uInt sourlo=DFWORD(df, 3);
#endif
c=string;
// where result will go
if
(((Int)sourhi)<0) *c++=
'-'
;
// handle sign
comb=sourhi>>26;
// sign+combination field
msd=DECCOMBMSD[comb];
// decode the combination field
exp
=DECCOMBEXP[comb];
// ..
if
(EXPISSPECIAL(
exp
)) {
// special
if
(
exp
==DECFLOAT_Inf) {
// infinity
strcpy
(c,
"Inf"
);
strcpy
(c+3,
"inity"
);
return
string;
// easy
}
if
(sourhi&0x02000000) *c++=
's'
;
// sNaN
strcpy
(c,
"NaN"
);
// complete word
c+=3;
// step past
// quick exit if the payload is zero
#if DECPMAX==7
if
((sourhi&0x000fffff)==0)
return
string;
#elif DECPMAX==16
if
(sourlo==0 && (sourhi&0x0003ffff)==0)
return
string;
#elif DECPMAX==34
if
(sourlo==0 && sourml==0 && sourmh==0
&& (sourhi&0x00003fff)==0)
return
string;
#endif
// otherwise drop through to add integer; set correct exp etc.
exp
=0; msd=0;
// setup for following code
}
else
{
// complete exponent; top two bits are in place
exp
+=GETECON(df)-DECBIAS;
// .. + continuation and unbias
}
/* convert the digits of the significand to characters */
cstart=c;
// save start of coefficient
if
(msd) *c++=(
char
)(
'0'
+(
char
)msd);
// non-zero most significant digit
// Decode the declets. After extracting each declet, it is
// decoded to a 4-uByte sequence by table lookup; the four uBytes
// are the three encoded BCD8 digits followed by a 1-byte length
// (significant digits, except that 000 has length 0). This allows
// us to left-align the first declet with non-zero content, then
// the remaining ones are full 3-char length. Fixed-length copies
// are used because variable-length memcpy causes a subroutine call
// in at least two compilers. (The copies are length 4 for speed
// and are safe because the last item in the array is of length
// three and has the length byte following.)
#define dpd2char(dpdin) u=&DPD2BCD8[((dpdin)&0x3ff)*4]; \
if
(c!=cstart) {UBFROMUI(c, UBTOUI(u)|CHARMASK); c+=3;} \
else
if
(*(u+3)) { \
UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK); c+=*(u+3);}
#if DECPMAX==7
dpd2char(sourhi>>10);
// declet 1
dpd2char(sourhi);
// declet 2
#elif DECPMAX==16
dpd2char(sourhi>>8);
// declet 1
dpd2char((sourhi<<2) | (sourlo>>30));
// declet 2
dpd2char(sourlo>>20);
// declet 3
dpd2char(sourlo>>10);
// declet 4
dpd2char(sourlo);
// declet 5
#elif DECPMAX==34
dpd2char(sourhi>>4);
// declet 1
dpd2char((sourhi<<6) | (sourmh>>26));
// declet 2
dpd2char(sourmh>>16);
// declet 3
dpd2char(sourmh>>6);
// declet 4
dpd2char((sourmh<<4) | (sourml>>28));
// declet 5
dpd2char(sourml>>18);
// declet 6
dpd2char(sourml>>8);
// declet 7
dpd2char((sourml<<2) | (sourlo>>30));
// declet 8
dpd2char(sourlo>>20);
// declet 9
dpd2char(sourlo>>10);
// declet 10
dpd2char(sourlo);
// declet 11
#endif
if
(c==cstart) *c++=
'0'
;
// all zeros, empty -- make "0"
if
(
exp
==0) {
// integer or NaN case -- easy
*c=
'\0'
;
// terminate
return
string;
}
/* non-0 exponent */
e=0;
// assume no E
pre=(Int)(c-cstart)+
exp
;
// length+exp [c->LSD+1]
// [here, pre-exp is the digits count (==1 for zero)]
if
(
exp
>0 || pre<-5) {
// need exponential form
e=pre-1;
// calculate E value
pre=1;
// assume one digit before '.'
if
(e!=0) {
// engineering: may need to adjust
Int adj;
// adjustment
// The C remainder operator is undefined for negative numbers, so
// a positive remainder calculation must be used here
if
(e<0) {
adj=(-e)%3;
if
(adj!=0) adj=3-adj;
}
else
{
// e>0
adj=e%3;
}
e=e-adj;
// if dealing with zero still produce an exponent which is a
// multiple of three, as expected, but there will only be the
// one zero before the E, still. Otherwise note the padding.
if
(!DFISZERO(df)) pre+=adj;
else
{
// is zero
if
(adj!=0) {
// 0.00Esnn needed
e=e+3;
pre=-(2-adj);
}
}
// zero
}
// engineering adjustment
}
// exponential form
// printf("e=%ld pre=%ld exp=%ld\n", (LI)e, (LI)pre, (LI)exp);
/* modify the coefficient, adding 0s, '.', and E+nn as needed */
if
(pre>0) {
// ddd.ddd (plain), perhaps with E
// or dd00 padding for engineering
char
*dotat=cstart+pre;
if
(dotat<c) {
// if embedded dot needed...
// move by fours; there must be space for junk at the end
// because there is still space for exponent
s=dotat+ROUNDDOWN4(c-dotat);
// source
t=s+1;
// target
// open the gap [cannot use memcpy]
for
(; s>=dotat; s-=4, t-=4) UBFROMUI(t, UBTOUI(s));
*dotat=
'.'
;
c++;
// length increased by one
}
// need dot?
else
for
(; c<dotat; c++) *c=
'0'
;
// pad for engineering
}
// pre>0
else
{
/* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (may have
E, but only for 0.00E+3 kind of case -- with plenty of spare
space in this case */
pre=-pre+2;
// gap width, including "0."
t=cstart+ROUNDDOWN4(c-cstart)+pre;
// preferred first target point
// backoff if too far to the right
if
(t>string+DECSTRING-5) t=string+DECSTRING-5;
// adjust to fit
// now shift the entire coefficient to the right, being careful not
// to access to the left of string [cannot use memcpy]
for
(s=t-pre; s>=string; s-=4, t-=4) UBFROMUI(t, UBTOUI(s));
// for Quads and Singles there may be a character or two left...
s+=3;
// where next would come from
for
(; s>=cstart; s--, t--) *(t+3)=*(s);
// now have fill 0. through 0.00000; use overlaps to avoid tests
if
(pre>=4) {
memcpy
(cstart+pre-4,
"0000"
, 4);
memcpy
(cstart,
"0.00"
, 4);
}
else
{
// 2 or 3
*(cstart+pre-1)=
'0'
;
memcpy
(cstart,
"0."
, 2);
}
c+=pre;
// to end
}
// finally add the E-part, if needed; it will never be 0, and has
// a maximum length of 3 or 4 digits (asserted above)
if
(e!=0) {
memcpy
(c,
"E+"
, 2);
// starts with E, assume +
c++;
if
(e<0) {
*c=
'-'
;
// oops, need '-'
e=-e;
// uInt, please
}
c++;
// Three-character exponents are easy; 4-character a little trickier
#if DECEMAXD<=3
u=&BIN2BCD8[e*4];
// -> 3 digits + length byte
// copy fixed 4 characters [is safe], starting at non-zero
// and with character mask to convert BCD to char
UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK);
c+=*(u+3);
// bump pointer appropriately
#elif DECEMAXD==4
if
(e<1000) {
// 3 (or fewer) digits case
u=&BIN2BCD8[e*4];
// -> 3 digits + length byte
UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK);
// [as above]
c+=*(u+3);
// bump pointer appropriately
}
else
{
// 4-digits
Int thou=((e>>3)*1049)>>17;
// e/1000
Int rem=e-(1000*thou);
// e%1000
*c++=(
char
)(
'0'
+(
char
)thou);
// the thousands digit
u=&BIN2BCD8[rem*4];
// -> 3 digits + length byte
UBFROMUI(c, UBTOUI(u)|CHARMASK);
// copy fixed 3+1 characters [is safe]
c+=3;
// bump pointer, always 3 digits
}
#endif
}
*c=
'\0'
;
// terminate
//printf("res %s\n", string);
return
string;
}
// decFloatToEngString
/* ------------------------------------------------------------------ */
/* decFloatToPacked -- convert decFloat to Packed decimal + exponent */
/* */
/* df is the source decFloat */
/* exp will be set to the unbiased exponent, q, or to a special */
/* value in the form returned by decFloatGetExponent */
/* packed is where DECPMAX nibbles will be written with the sign as */
/* final nibble (0x0c for +, 0x0d for -); a NaN has a first nibble */
/* of zero, and an infinity is all zeros. decDouble and decQuad */
/* have a additional leading zero nibble, leading to result */
/* lengths of 4, 9, and 18 bytes. */
/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */
/* 0 otherwise) */
/* */
/* No error is possible, and no status will be set. */
/* ------------------------------------------------------------------ */
Int decFloatToPacked(
const
decFloat *df, Int *
exp
, uByte *packed) {
uByte bcdar[DECPMAX+2];
// work buffer
uByte *ip=bcdar, *op=packed;
// work pointers
if
(DFISINF(df)) {
memset
(bcdar, 0, DECPMAX+2);
*
exp
=DECFLOAT_Inf;
}
else
{
GETCOEFF(df, bcdar+1);
// use macro
if
(DFISNAN(df)) {
bcdar[1]=0;
// MSD needs clearing
*
exp
=DFWORD(df, 0)&0x7e000000;
}
else
{
// finite
*
exp
=GETEXPUN(df);
}
}
// now pack; coefficient currently at bcdar+1
#if SINGLE
ip++;
// ignore first byte
#else
*ip=0;
// need leading zero
#endif
// set final byte to Packed BCD sign value
bcdar[DECPMAX+1]=(DFISSIGNED(df) ? DECPMINUS : DECPPLUS);
// pack an even number of bytes...
for
(; op<packed+((DECPMAX+2)/2); op++, ip+=2) {
*op=(uByte)((*ip<<4)+*(ip+1));
}
return
(bcdar[DECPMAX+1]==DECPMINUS ? DECFLOAT_Sign : 0);
}
// decFloatToPacked
/* ------------------------------------------------------------------ */
/* decFloatToString -- conversion to numeric string */
/* */
/* df is the decFloat format number to convert */
/* string is the string where the result will be laid out */
/* */
/* string must be at least DECPMAX+9 characters (the worst case is */
/* "-0.00000nnn...nnn\0", which is as long as the exponent form when */
/* DECEMAXD<=4); this condition is asserted above */
/* */
/* No error is possible, and no status will be set */
/* ------------------------------------------------------------------ */
char
* decFloatToString(
const
decFloat *df,
char
*string){
uInt msd;
// coefficient MSD
Int
exp
;
// exponent top two bits or full
uInt comb;
// combination field
char
*cstart;
// coefficient start
char
*c;
// output pointer in string
char
*s, *t;
// .. (source, target)
Int pre, e;
// work
const
uByte *u;
// ..
uInt uiwork;
// for macros [one compiler needs
// volatile here to avoid bug, but
// that doubles execution time]
// Source words; macro handles endianness
uInt sourhi=DFWORD(df, 0);
// word with sign
#if DECPMAX==16
uInt sourlo=DFWORD(df, 1);
#elif DECPMAX==34
uInt sourmh=DFWORD(df, 1);
uInt sourml=DFWORD(df, 2);
uInt sourlo=DFWORD(df, 3);
#endif
c=string;
// where result will go
if
(((Int)sourhi)<0) *c++=
'-'
;
// handle sign
comb=sourhi>>26;
// sign+combination field
msd=DECCOMBMSD[comb];
// decode the combination field
exp
=DECCOMBEXP[comb];
// ..
if
(!EXPISSPECIAL(
exp
)) {
// finite
// complete exponent; top two bits are in place
exp
+=GETECON(df)-DECBIAS;
// .. + continuation and unbias
}
else
{
// IS special
if
(
exp
==DECFLOAT_Inf) {
// infinity
strcpy
(c,
"Infinity"
);
return
string;
// easy
}
if
(sourhi&0x02000000) *c++=
's'
;
// sNaN
strcpy
(c,
"NaN"
);
// complete word
c+=3;
// step past
// quick exit if the payload is zero
#if DECPMAX==7
if
((sourhi&0x000fffff)==0)
return
string;
#elif DECPMAX==16
if
(sourlo==0 && (sourhi&0x0003ffff)==0)
return
string;
#elif DECPMAX==34
if
(sourlo==0 && sourml==0 && sourmh==0
&& (sourhi&0x00003fff)==0)
return
string;
#endif
// otherwise drop through to add integer; set correct exp etc.
exp
=0; msd=0;
// setup for following code
}
/* convert the digits of the significand to characters */
cstart=c;
// save start of coefficient
if
(msd) *c++=(
char
)(
'0'
+(
char
)msd);
// non-zero most significant digit
// Decode the declets. After extracting each declet, it is
// decoded to a 4-uByte sequence by table lookup; the four uBytes
// are the three encoded BCD8 digits followed by a 1-byte length
// (significant digits, except that 000 has length 0). This allows
// us to left-align the first declet with non-zero content, then
// the remaining ones are full 3-char length. Fixed-length copies
// are used because variable-length memcpy causes a subroutine call
// in at least two compilers. (The copies are length 4 for speed
// and are safe because the last item in the array is of length
// three and has the length byte following.)
#define dpd2char(dpdin) u=&DPD2BCD8[((dpdin)&0x3ff)*4]; \
if
(c!=cstart) {UBFROMUI(c, UBTOUI(u)|CHARMASK); c+=3;} \
else
if
(*(u+3)) { \
UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK); c+=*(u+3);}
#if DECPMAX==7
dpd2char(sourhi>>10);
// declet 1
dpd2char(sourhi);
// declet 2
#elif DECPMAX==16
dpd2char(sourhi>>8);
// declet 1
dpd2char((sourhi<<2) | (sourlo>>30));
// declet 2
dpd2char(sourlo>>20);
// declet 3
dpd2char(sourlo>>10);
// declet 4
dpd2char(sourlo);
// declet 5
#elif DECPMAX==34
dpd2char(sourhi>>4);
// declet 1
dpd2char((sourhi<<6) | (sourmh>>26));
// declet 2
dpd2char(sourmh>>16);
// declet 3
dpd2char(sourmh>>6);
// declet 4
dpd2char((sourmh<<4) | (sourml>>28));
// declet 5
dpd2char(sourml>>18);
// declet 6
dpd2char(sourml>>8);
// declet 7
dpd2char((sourml<<2) | (sourlo>>30));
// declet 8
dpd2char(sourlo>>20);
// declet 9
dpd2char(sourlo>>10);
// declet 10
dpd2char(sourlo);
// declet 11
#endif
if
(c==cstart) *c++=
'0'
;
// all zeros, empty -- make "0"
//[This fast path is valid but adds 3-5 cycles to worst case length]
//if (exp==0) { // integer or NaN case -- easy
// *c='\0'; // terminate
// return string;
// }
e=0;
// assume no E
pre=(Int)(c-cstart)+
exp
;
// length+exp [c->LSD+1]
// [here, pre-exp is the digits count (==1 for zero)]
if
(
exp
>0 || pre<-5) {
// need exponential form
e=pre-1;
// calculate E value
pre=1;
// assume one digit before '.'
}
// exponential form
/* modify the coefficient, adding 0s, '.', and E+nn as needed */
if
(pre>0) {
// ddd.ddd (plain), perhaps with E
char
*dotat=cstart+pre;
if
(dotat<c) {
// if embedded dot needed...
// [memmove is a disaster, here]
// move by fours; there must be space for junk at the end
// because exponent is still possible
s=dotat+ROUNDDOWN4(c-dotat);
// source
t=s+1;
// target
// open the gap [cannot use memcpy]
for
(; s>=dotat; s-=4, t-=4) UBFROMUI(t, UBTOUI(s));
*dotat=
'.'
;
c++;
// length increased by one
}
// need dot?
// finally add the E-part, if needed; it will never be 0, and has
// a maximum length of 3 or 4 digits (asserted above)
if
(e!=0) {
memcpy
(c,
"E+"
, 2);
// starts with E, assume +
c++;
if
(e<0) {
*c=
'-'
;
// oops, need '-'
e=-e;
// uInt, please
}
c++;
// Three-character exponents are easy; 4-character a little trickier
#if DECEMAXD<=3
u=&BIN2BCD8[e*4];
// -> 3 digits + length byte
// copy fixed 4 characters [is safe], starting at non-zero
// and with character mask to convert BCD to char
UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK);
c+=*(u+3);
// bump pointer appropriately
#elif DECEMAXD==4
if
(e<1000) {
// 3 (or fewer) digits case
u=&BIN2BCD8[e*4];
// -> 3 digits + length byte
UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK);
// [as above]
c+=*(u+3);
// bump pointer appropriately
}
else
{
// 4-digits
Int thou=((e>>3)*1049)>>17;
// e/1000
Int rem=e-(1000*thou);
// e%1000
*c++=(
char
)(
'0'
+(
char
)thou);
// the thousands digit
u=&BIN2BCD8[rem*4];
// -> 3 digits + length byte
UBFROMUI(c, UBTOUI(u)|CHARMASK);
// copy fixed 3+1 characters [is safe]
c+=3;
// bump pointer, always 3 digits
}
#endif
}
*c=
'\0'
;
// add terminator
//printf("res %s\n", string);
return
string;
}
// pre>0
/* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
// Surprisingly, this is close to being the worst-case path, so the
// shift is done by fours; this is a little tricky because the
// rightmost character to be written must not be beyond where the
// rightmost terminator could be -- so backoff to not touch
// terminator position if need be (this can make exact alignments
// for full Doubles, but in some cases needs care not to access too
// far to the left)
pre=-pre+2;
// gap width, including "0."
t=cstart+ROUNDDOWN4(c-cstart)+pre;
// preferred first target point
// backoff if too far to the right
if
(t>string+DECSTRING-5) t=string+DECSTRING-5;
// adjust to fit
// now shift the entire coefficient to the right, being careful not
// to access to the left of string [cannot use memcpy]
for
(s=t-pre; s>=string; s-=4, t-=4) UBFROMUI(t, UBTOUI(s));
// for Quads and Singles there may be a character or two left...
s+=3;
// where next would come from
for
(; s>=cstart; s--, t--) *(t+3)=*(s);
// now have fill 0. through 0.00000; use overlaps to avoid tests
if
(pre>=4) {
memcpy
(cstart+pre-4,
"0000"
, 4);
memcpy
(cstart,
"0.00"
, 4);
}
else
{
// 2 or 3
*(cstart+pre-1)=
'0'
;
memcpy
(cstart,
"0."
, 2);
}
*(c+pre)=
'\0'
;
// terminate
return
string;
}
// decFloatToString
/* ------------------------------------------------------------------ */
/* decFloatToWider -- conversion to next-wider format */
/* */
/* source is the decFloat format number which gets the result of */
/* the conversion */
/* wider is the decFloatWider format number which will be narrowed */
/* returns wider */
/* */
/* Widening is always exact; no status is set (sNaNs are copied and */
/* do not signal). The result will be canonical if the source is, */
/* and may or may not be if the source is not. */
/* ------------------------------------------------------------------ */
// widening is not possible for decQuad format numbers; simply omit
#if !QUAD
decFloatWider * decFloatToWider(
const
decFloat *source, decFloatWider *wider) {
uInt msd;
/* Construct and copy the sign word */
if
(DFISSPECIAL(source)) {
// copy sign, combination, and first bit of exponent (sNaN selector)
DFWWORD(wider, 0)=DFWORD(source, 0)&0xfe000000;
msd=0;
}
else
{
// is finite number
uInt
exp
=GETEXPUN(source)+DECWBIAS;
// get unbiased exponent and rebias
uInt code=(
exp
>>DECWECONL)<<29;
// set two bits of exp [msd=0]
code|=(
exp
<<(32-6-DECWECONL)) & 0x03ffffff;
// add exponent continuation
code|=DFWORD(source, 0)&0x80000000;
// add sign
DFWWORD(wider, 0)=code;
// .. and place top word in wider
msd=GETMSD(source);
// get source coefficient MSD [0-9]
}
/* Copy the coefficient and clear any 'unused' words to left */
#if SINGLE
DFWWORD(wider, 1)=(DFWORD(source, 0)&0x000fffff)|(msd<<20);
#elif DOUBLE
DFWWORD(wider, 2)=(DFWORD(source, 0)&0x0003ffff)|(msd<<18);
DFWWORD(wider, 3)=DFWORD(source, 1);
DFWWORD(wider, 1)=0;
#endif
return
wider;
}
// decFloatToWider
#endif
/* ------------------------------------------------------------------ */
/* decFloatVersion -- return package version string */
/* */
/* returns a constant string describing this package */
/* ------------------------------------------------------------------ */
const
char
*decFloatVersion(
void
) {
return
DECVERSION;
}
// decFloatVersion
/* ------------------------------------------------------------------ */
/* decFloatZero -- set to canonical (integer) zero */
/* */
/* df is the decFloat format number to integer +0 (q=0, c=+0) */
/* returns df */
/* */
/* No error is possible, and no status can be set. */
/* ------------------------------------------------------------------ */
decFloat * decFloatZero(decFloat *df){
DFWORD(df, 0)=ZEROWORD;
// set appropriate top word
#if DOUBLE || QUAD
DFWORD(df, 1)=0;
#if QUAD
DFWORD(df, 2)=0;
DFWORD(df, 3)=0;
#endif
#endif
// decFloatShow(df, "zero");
return
df;
}
// decFloatZero
/* ------------------------------------------------------------------ */
/* Private generic function (not format-specific) for development use */
/* ------------------------------------------------------------------ */
// This is included once only, for all to use
#if QUAD && (DECCHECK || DECTRACE)
/* ---------------------------------------------------------------- */
/* decShowNum -- display bcd8 number in debug form */
/* */
/* num is the bcdnum to display */
/* tag is a string to label the display */
/* ---------------------------------------------------------------- */
void
decShowNum(
const
bcdnum *num,
const
char
*tag) {
const
char
*csign=
"+"
;
// sign character
uByte *ub;
// work
uInt uiwork;
// for macros
if
(num->sign==DECFLOAT_Sign) csign=
"-"
;
printf
(
">%s> "
, tag);
if
(num->exponent==DECFLOAT_Inf)
printf
(
"%sInfinity"
, csign);
else
if
(num->exponent==DECFLOAT_qNaN)
printf
(
"%sqNaN"
, csign);
else
if
(num->exponent==DECFLOAT_sNaN)
printf
(
"%ssNaN"
, csign);
else
{
// finite
char
qbuf[10];
// for right-aligned q
char
*c;
// work
const
uByte *u;
// ..
Int e=num->exponent;
// .. exponent
strcpy
(qbuf,
"q="
);
c=&qbuf[2];
// where exponent will go
// lay out the exponent
if
(e<0) {
*c++=
'-'
;
// add '-'
e=-e;
// uInt, please
}
#if DECEMAXD>4
#error Exponent form is too long for ShowNum to lay out
#endif
if
(e==0) *c++=
'0'
;
// 0-length case
else
if
(e<1000) {
// 3 (or fewer) digits case
u=&BIN2BCD8[e*4];
// -> 3 digits + length byte
UBFROMUI(c, UBTOUI(u+3-*(u+3))|CHARMASK);
// [as above]
c+=*(u+3);
// bump pointer appropriately
}
else
{
// 4-digits
Int thou=((e>>3)*1049)>>17;
// e/1000
Int rem=e-(1000*thou);
// e%1000
*c++=(
char
)(
'0'
+(
char
)thou);
// the thousands digit
u=&BIN2BCD8[rem*4];
// -> 3 digits + length byte
UBFROMUI(c, UBTOUI(u)|CHARMASK);
// copy fixed 3+1 characters [is safe]
c+=3;
// bump pointer, always 3 digits
}
*c=
'\0'
;
// add terminator
printf
(
"%7s c=%s"
, qbuf, csign);
}
if
(!EXPISSPECIAL(num->exponent) || num->msd!=num->lsd || *num->lsd!=0) {
for
(ub=num->msd; ub<=num->lsd; ub++) {
// coefficient...
printf
(
"%1x"
, *ub);
if
((num->lsd-ub)%3==0 && ub!=num->lsd)
printf
(
" "
);
// 4-space
}
}
printf
(
"\n"
);
}
// decShowNum
#endif