/* ------------------------------------------------------------------ */
/* Decimal 32-bit format module */
/* ------------------------------------------------------------------ */
/* Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. */
/* */
/* This software is made available under the terms of the */
/* ICU License -- ICU 1.8.1 and later. */
/* */
/* The description and User's Guide ("The decNumber C Library") for */
/* this software is called decNumber.pdf. This document is */
/* available, together with arithmetic and format specifications, */
/* testcases, and Web links, on the General Decimal Arithmetic page. */
/* */
/* Please send comments, suggestions, and corrections to the author: */
/* mfc@uk.ibm.com */
/* Mike Cowlishaw, IBM Fellow */
/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
/* ------------------------------------------------------------------ */
/* This module comprises the routines for decimal32 format numbers. */
/* Conversions are supplied to and from decNumber and String. */
/* */
/* This is used when decNumber provides operations, either for all */
/* operations or as a proxy between decNumber and decSingle. */
/* */
/* Error handling is the same as decNumber (qv.). */
/* ------------------------------------------------------------------ */
#include <string.h> // [for memset/memcpy]
#include <stdio.h> // [for printf]
#define DECNUMDIGITS 7 // make decNumbers with space for 7
#include "decNumber.h" // base number library
#include "decNumberLocal.h" // decNumber local types, etc.
#include "decimal32.h" // our primary include
/* Utility tables and routines [in decimal64.c] */
// DPD2BIN and the reverse are renamed to prevent link-time conflict
// if decQuad is also built in the same executable
#define DPD2BIN DPD2BINx
#define BIN2DPD BIN2DPDx
extern
const
uInt COMBEXP[32], COMBMSD[32];
extern
const
uShort DPD2BIN[1024];
extern
const
uShort BIN2DPD[1000];
extern
const
uByte BIN2CHAR[4001];
extern
void
decDigitsToDPD(
const
decNumber *, uInt *, Int);
extern
void
decDigitsFromDPD(decNumber *,
const
uInt *, Int);
#if DECTRACE || DECCHECK
void
decimal32Show(
const
decimal32 *);
// for debug
extern
void
decNumberShow(
const
decNumber *);
// ..
#endif
/* Useful macro */
// Clear a structure (e.g., a decNumber)
#define DEC_clear(d) memset(d, 0, sizeof(*d))
/* ------------------------------------------------------------------ */
/* decimal32FromNumber -- convert decNumber to decimal32 */
/* */
/* ds is the target decimal32 */
/* dn is the source number (assumed valid) */
/* set is the context, used only for reporting errors */
/* */
/* The set argument is used only for status reporting and for the */
/* rounding mode (used if the coefficient is more than DECIMAL32_Pmax */
/* digits or an overflow is detected). If the exponent is out of the */
/* valid range then Overflow or Underflow will be raised. */
/* After Underflow a subnormal result is possible. */
/* */
/* DEC_Clamped is set if the number has to be 'folded down' to fit, */
/* by reducing its exponent and multiplying the coefficient by a */
/* power of ten, or if the exponent on a zero had to be clamped. */
/* ------------------------------------------------------------------ */
decimal32 * decimal32FromNumber(decimal32 *d32,
const
decNumber *dn,
decContext *set) {
uInt status=0;
// status accumulator
Int ae;
// adjusted exponent
decNumber dw;
// work
decContext dc;
// ..
uInt comb,
exp
;
// ..
uInt uiwork;
// for macros
uInt targ=0;
// target 32-bit
// If the number has too many digits, or the exponent could be
// out of range then reduce the number under the appropriate
// constraints. This could push the number to Infinity or zero,
// so this check and rounding must be done before generating the
// decimal32]
ae=dn->exponent+dn->digits-1;
// [0 if special]
if
(dn->digits>DECIMAL32_Pmax
// too many digits
|| ae>DECIMAL32_Emax
// likely overflow
|| ae<DECIMAL32_Emin) {
// likely underflow
decContextDefault(&dc, DEC_INIT_DECIMAL32);
// [no traps]
dc.round=set->round;
// use supplied rounding
decNumberPlus(&dw, dn, &dc);
// (round and check)
// [this changes -0 to 0, so enforce the sign...]
dw.bits|=dn->bits&DECNEG;
status=dc.status;
// save status
dn=&dw;
// use the work number
}
// maybe out of range
if
(dn->bits&DECSPECIAL) {
// a special value
if
(dn->bits&DECINF) targ=DECIMAL_Inf<<24;
else
{
// sNaN or qNaN
if
((*dn->lsu!=0 || dn->digits>1)
// non-zero coefficient
&& (dn->digits<DECIMAL32_Pmax)) {
// coefficient fits
decDigitsToDPD(dn, &targ, 0);
}
if
(dn->bits&DECNAN) targ|=DECIMAL_NaN<<24;
else
targ|=DECIMAL_sNaN<<24;
}
// a NaN
}
// special
else
{
// is finite
if
(decNumberIsZero(dn)) {
// is a zero
// set and clamp exponent
if
(dn->exponent<-DECIMAL32_Bias) {
exp
=0;
// low clamp
status|=DEC_Clamped;
}
else
{
exp
=dn->exponent+DECIMAL32_Bias;
// bias exponent
if
(
exp
>DECIMAL32_Ehigh) {
// top clamp
exp
=DECIMAL32_Ehigh;
status|=DEC_Clamped;
}
}
comb=(
exp
>>3) & 0x18;
// msd=0, exp top 2 bits ..
}
else
{
// non-zero finite number
uInt msd;
// work
Int pad=0;
// coefficient pad digits
// the dn is known to fit, but it may need to be padded
exp
=(uInt)(dn->exponent+DECIMAL32_Bias);
// bias exponent
if
(
exp
>DECIMAL32_Ehigh) {
// fold-down case
pad=
exp
-DECIMAL32_Ehigh;
exp
=DECIMAL32_Ehigh;
// [to maximum]
status|=DEC_Clamped;
}
// fastpath common case
if
(DECDPUN==3 && pad==0) {
targ=BIN2DPD[dn->lsu[0]];
if
(dn->digits>3) targ|=(uInt)(BIN2DPD[dn->lsu[1]])<<10;
msd=(dn->digits==7 ? dn->lsu[2] : 0);
}
else
{
// general case
decDigitsToDPD(dn, &targ, pad);
// save and clear the top digit
msd=targ>>20;
targ&=0x000fffff;
}
// create the combination field
if
(msd>=8) comb=0x18 | ((
exp
>>5) & 0x06) | (msd & 0x01);
else
comb=((
exp
>>3) & 0x18) | msd;
}
targ|=comb<<26;
// add combination field ..
targ|=(
exp
&0x3f)<<20;
// .. and exponent continuation
}
// finite
if
(dn->bits&DECNEG) targ|=0x80000000;
// add sign bit
// now write to storage; this is endian
UBFROMUI(d32->bytes, targ);
// directly store the int
if
(status!=0) decContextSetStatus(set, status);
// pass on status
// decimal32Show(d32);
return
d32;
}
// decimal32FromNumber
/* ------------------------------------------------------------------ */
/* decimal32ToNumber -- convert decimal32 to decNumber */
/* d32 is the source decimal32 */
/* dn is the target number, with appropriate space */
/* No error is possible. */
/* ------------------------------------------------------------------ */
decNumber * decimal32ToNumber(
const
decimal32 *d32, decNumber *dn) {
uInt msd;
// coefficient MSD
uInt
exp
;
// exponent top two bits
uInt comb;
// combination field
uInt sour;
// source 32-bit
uInt uiwork;
// for macros
// load source from storage; this is endian
sour=UBTOUI(d32->bytes);
// directly load the int
comb=(sour>>26)&0x1f;
// combination field
decNumberZero(dn);
// clean number
if
(sour&0x80000000) dn->bits=DECNEG;
// set sign if negative
msd=COMBMSD[comb];
// decode the combination field
exp
=COMBEXP[comb];
// ..
if
(
exp
==3) {
// is a special
if
(msd==0) {
dn->bits|=DECINF;
return
dn;
// no coefficient needed
}
else
if
(sour&0x02000000) dn->bits|=DECSNAN;
else
dn->bits|=DECNAN;
msd=0;
// no top digit
}
else
{
// is a finite number
dn->exponent=(
exp
<<6)+((sour>>20)&0x3f)-DECIMAL32_Bias;
// unbiased
}
// get the coefficient
sour&=0x000fffff;
// clean coefficient continuation
if
(msd) {
// non-zero msd
sour|=msd<<20;
// prefix to coefficient
decDigitsFromDPD(dn, &sour, 3);
// process 3 declets
return
dn;
}
// msd=0
if
(!sour)
return
dn;
// easy: coefficient is 0
if
(sour&0x000ffc00)
// need 2 declets?
decDigitsFromDPD(dn, &sour, 2);
// process 2 declets
else
decDigitsFromDPD(dn, &sour, 1);
// process 1 declet
return
dn;
}
// decimal32ToNumber
/* ------------------------------------------------------------------ */
/* to-scientific-string -- conversion to numeric string */
/* to-engineering-string -- conversion to numeric string */
/* */
/* decimal32ToString(d32, string); */
/* decimal32ToEngString(d32, string); */
/* */
/* d32 is the decimal32 format number to convert */
/* string is the string where the result will be laid out */
/* */
/* string must be at least 24 characters */
/* */
/* No error is possible, and no status can be set. */
/* ------------------------------------------------------------------ */
char
* decimal32ToEngString(
const
decimal32 *d32,
char
*string){
decNumber dn;
// work
decimal32ToNumber(d32, &dn);
decNumberToEngString(&dn, string);
return
string;
}
// decimal32ToEngString
char
* decimal32ToString(
const
decimal32 *d32,
char
*string){
uInt msd;
// coefficient MSD
Int
exp
;
// exponent top two bits or full
uInt comb;
// combination field
char
*cstart;
// coefficient start
char
*c;
// output pointer in string
const
uByte *u;
// work
char
*s, *t;
// .. (source, target)
Int dpd;
// ..
Int pre, e;
// ..
uInt uiwork;
// for macros
uInt sour;
// source 32-bit
// load source from storage; this is endian
sour=UBTOUI(d32->bytes);
// directly load the int
c=string;
// where result will go
if
(((Int)sour)<0) *c++=
'-'
;
// handle sign
comb=(sour>>26)&0x1f;
// combination field
msd=COMBMSD[comb];
// decode the combination field
exp
=COMBEXP[comb];
// ..
if
(
exp
==3) {
if
(msd==0) {
// infinity
strcpy
(c,
"Inf"
);
strcpy
(c+3,
"inity"
);
return
string;
// easy
}
if
(sour&0x02000000) *c++=
's'
;
// sNaN
strcpy
(c,
"NaN"
);
// complete word
c+=3;
// step past
if
((sour&0x000fffff)==0)
return
string;
// zero payload
// otherwise drop through to add integer; set correct exp
exp
=0; msd=0;
// setup for following code
}
else
exp
=(
exp
<<6)+((sour>>20)&0x3f)-DECIMAL32_Bias;
// unbiased
// convert 7 digits of significand to characters
cstart=c;
// save start of coefficient
if
(msd) *c++=
'0'
+(
char
)msd;
// non-zero most significant digit
// Now decode the declets. After extracting each one, it is
// decoded to binary and then to a 4-char sequence by table lookup;
// the 4-chars are a 1-char length (significant digits, except 000
// has length 0). This allows us to left-align the first declet
// with non-zero content, then remaining ones are full 3-char
// length. We use fixed-length memcpys because variable-length
// causes a subroutine call in GCC. (These are length 4 for speed
// and are safe because the array has an extra terminator byte.)
#define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \
if
(c!=cstart) {
memcpy
(c, u+1, 4); c+=3;} \
else
if
(*u) {
memcpy
(c, u+4-*u, 4); c+=*u;}
dpd=(sour>>10)&0x3ff;
// declet 1
dpd2char;
dpd=(sour)&0x3ff;
// declet 2
dpd2char;
if
(c==cstart) *c++=
'0'
;
// all zeros -- make 0
if
(
exp
==0) {
// integer or NaN case -- easy
*c=
'\0'
;
// terminate
return
string;
}
/* non-0 exponent */
e=0;
// assume no E
pre=c-cstart+
exp
;
// [here, pre-exp is the digits count (==1 for zero)]
if
(
exp
>0 || pre<-5) {
// need exponential form
e=pre-1;
// calculate E value
pre=1;
// assume one digit before '.'
}
// exponential form
/* modify the coefficient, adding 0s, '.', and E+nn as needed */
s=c-1;
// source (LSD)
if
(pre>0) {
// ddd.ddd (plain), perhaps with E
char
*dotat=cstart+pre;
if
(dotat<c) {
// if embedded dot needed...
t=c;
// target
for
(; s>=dotat; s--, t--) *t=*s;
// open the gap; leave t at gap
*t=
'.'
;
// insert the dot
c++;
// length increased by one
}
// finally add the E-part, if needed; it will never be 0, and has
// a maximum length of 3 digits (E-101 case)
if
(e!=0) {
*c++=
'E'
;
// starts with E
*c++=
'+'
;
// assume positive
if
(e<0) {
*(c-1)=
'-'
;
// oops, need '-'
e=-e;
// uInt, please
}
u=&BIN2CHAR[e*4];
// -> length byte
memcpy
(c, u+4-*u, 4);
// copy fixed 4 characters [is safe]
c+=*u;
// bump pointer appropriately
}
*c=
'\0'
;
// add terminator
//printf("res %s\n", string);
return
string;
}
// pre>0
/* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
t=c+1-pre;
*(t+1)=
'\0'
;
// can add terminator now
for
(; s>=cstart; s--, t--) *t=*s;
// shift whole coefficient right
c=cstart;
*c++=
'0'
;
// always starts with 0.
*c++=
'.'
;
for
(; pre<0; pre++) *c++=
'0'
;
// add any 0's after '.'
//printf("res %s\n", string);
return
string;
}
// decimal32ToString
/* ------------------------------------------------------------------ */
/* to-number -- conversion from numeric string */
/* */
/* decimal32FromString(result, string, set); */
/* */
/* result is the decimal32 format number which gets the result of */
/* the conversion */
/* *string is the character string which should contain a valid */
/* number (which may be a special value) */
/* set is the context */
/* */
/* The context is supplied to this routine is used for error handling */
/* (setting of status and traps) and for the rounding mode, only. */
/* If an error occurs, the result will be a valid decimal32 NaN. */
/* ------------------------------------------------------------------ */
decimal32 * decimal32FromString(decimal32 *result,
const
char
*string,
decContext *set) {
decContext dc;
// work
decNumber dn;
// ..
decContextDefault(&dc, DEC_INIT_DECIMAL32);
// no traps, please
dc.round=set->round;
// use supplied rounding
decNumberFromString(&dn, string, &dc);
// will round if needed
decimal32FromNumber(result, &dn, &dc);
if
(dc.status!=0) {
// something happened
decContextSetStatus(set, dc.status);
// .. pass it on
}
return
result;
}
// decimal32FromString
/* ------------------------------------------------------------------ */
/* decimal32IsCanonical -- test whether encoding is canonical */
/* d32 is the source decimal32 */
/* returns 1 if the encoding of d32 is canonical, 0 otherwise */
/* No error is possible. */
/* ------------------------------------------------------------------ */
uInt decimal32IsCanonical(
const
decimal32 *d32) {
decNumber dn;
// work
decimal32 canon;
// ..
decContext dc;
// ..
decContextDefault(&dc, DEC_INIT_DECIMAL32);
decimal32ToNumber(d32, &dn);
decimal32FromNumber(&canon, &dn, &dc);
// canon will now be canonical
return
memcmp
(d32, &canon, DECIMAL32_Bytes)==0;
}
// decimal32IsCanonical
/* ------------------------------------------------------------------ */
/* decimal32Canonical -- copy an encoding, ensuring it is canonical */
/* d32 is the source decimal32 */
/* result is the target (may be the same decimal32) */
/* returns result */
/* No error is possible. */
/* ------------------------------------------------------------------ */
decimal32 * decimal32Canonical(decimal32 *result,
const
decimal32 *d32) {
decNumber dn;
// work
decContext dc;
// ..
decContextDefault(&dc, DEC_INIT_DECIMAL32);
decimal32ToNumber(d32, &dn);
decimal32FromNumber(result, &dn, &dc);
// result will now be canonical
return
result;
}
// decimal32Canonical
#if DECTRACE || DECCHECK
/* Macros for accessing decimal32 fields. These assume the argument
is a reference (pointer) to the decimal32 structure, and the
decimal32 is in network byte order (big-endian) */
// Get sign
#define decimal32Sign(d) ((unsigned)(d)->bytes[0]>>7)
// Get combination field
#define decimal32Comb(d) (((d)->bytes[0] & 0x7c)>>2)
// Get exponent continuation [does not remove bias]
#define decimal32ExpCon(d) ((((d)->bytes[0] & 0x03)<<4) \
| ((unsigned)(d)->bytes[1]>>4))
// Set sign [this assumes sign previously 0]
#define decimal32SetSign(d, b) { \
(d)->bytes[0]|=((unsigned)(b)<<7);}
// Set exponent continuation [does not apply bias]
// This assumes range has been checked and exponent previously 0;
// type of exponent must be unsigned
#define decimal32SetExpCon(d, e) { \
(d)->bytes[0]|=(uByte)((e)>>4); \
(d)->bytes[1]|=(uByte)(((e)&0x0F)<<4);}
/* ------------------------------------------------------------------ */
/* decimal32Show -- display a decimal32 in hexadecimal [debug aid] */
/* d32 -- the number to show */
/* ------------------------------------------------------------------ */
// Also shows sign/cob/expconfields extracted - valid bigendian only
void
decimal32Show(
const
decimal32 *d32) {
char
buf[DECIMAL32_Bytes*2+1];
Int i, j=0;
if
(DECLITEND) {
for
(i=0; i<DECIMAL32_Bytes; i++, j+=2) {
sprintf
(&buf[j],
"%02x"
, d32->bytes[3-i]);
}
printf
(
" D32> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n"
, buf,
d32->bytes[3]>>7, (d32->bytes[3]>>2)&0x1f,
((d32->bytes[3]&0x3)<<4)| (d32->bytes[2]>>4));
}
else
{
for
(i=0; i<DECIMAL32_Bytes; i++, j+=2) {
sprintf
(&buf[j],
"%02x"
, d32->bytes[i]);
}
printf
(
" D32> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n"
, buf,
decimal32Sign(d32), decimal32Comb(d32), decimal32ExpCon(d32));
}
}
// decimal32Show
#endif