/* ------------------------------------------------------------------ */
/* Decimal 64-bit format module */
/* ------------------------------------------------------------------ */
/* Copyright (c) IBM Corporation, 2000, 2009. All rights reserved. */
/* */
/* This software is made available under the terms of the */
/* ICU License -- ICU 1.8.1 and later. */
/* */
/* The description and User's Guide ("The decNumber C Library") for */
/* this software is called decNumber.pdf. This document is */
/* available, together with arithmetic and format specifications, */
/* testcases, and Web links, on the General Decimal Arithmetic page. */
/* */
/* Please send comments, suggestions, and corrections to the author: */
/* mfc@uk.ibm.com */
/* Mike Cowlishaw, IBM Fellow */
/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
/* ------------------------------------------------------------------ */
/* This module comprises the routines for decimal64 format numbers. */
/* Conversions are supplied to and from decNumber and String. */
/* */
/* This is used when decNumber provides operations, either for all */
/* operations or as a proxy between decNumber and decSingle. */
/* */
/* Error handling is the same as decNumber (qv.). */
/* ------------------------------------------------------------------ */
#include <string.h> // [for memset/memcpy]
#include <stdio.h> // [for printf]
#define DECNUMDIGITS 16 // make decNumbers with space for 16
#include "decNumber.h" // base number library
#include "decNumberLocal.h" // decNumber local types, etc.
#include "decimal64.h" // our primary include
/* Utility routines and tables [in decimal64.c]; externs for C++ */
// DPD2BIN and the reverse are renamed to prevent link-time conflict
// if decQuad is also built in the same executable
#define DPD2BIN DPD2BINx
#define BIN2DPD BIN2DPDx
extern
const
uInt COMBEXP[32], COMBMSD[32];
extern
const
uShort DPD2BIN[1024];
extern
const
uShort BIN2DPD[1000];
extern
const
uByte BIN2CHAR[4001];
extern
void
decDigitsFromDPD(decNumber *,
const
uInt *, Int);
extern
void
decDigitsToDPD(
const
decNumber *, uInt *, Int);
#if DECTRACE || DECCHECK
void
decimal64Show(
const
decimal64 *);
// for debug
extern
void
decNumberShow(
const
decNumber *);
// ..
#endif
/* Useful macro */
// Clear a structure (e.g., a decNumber)
#define DEC_clear(d) memset(d, 0, sizeof(*d))
/* define and include the tables to use for conversions */
#define DEC_BIN2CHAR 1
#define DEC_DPD2BIN 1
#define DEC_BIN2DPD 1 // used for all sizes
#include "decDPD.h" // lookup tables
/* ------------------------------------------------------------------ */
/* decimal64FromNumber -- convert decNumber to decimal64 */
/* */
/* ds is the target decimal64 */
/* dn is the source number (assumed valid) */
/* set is the context, used only for reporting errors */
/* */
/* The set argument is used only for status reporting and for the */
/* rounding mode (used if the coefficient is more than DECIMAL64_Pmax */
/* digits or an overflow is detected). If the exponent is out of the */
/* valid range then Overflow or Underflow will be raised. */
/* After Underflow a subnormal result is possible. */
/* */
/* DEC_Clamped is set if the number has to be 'folded down' to fit, */
/* by reducing its exponent and multiplying the coefficient by a */
/* power of ten, or if the exponent on a zero had to be clamped. */
/* ------------------------------------------------------------------ */
decimal64 * decimal64FromNumber(decimal64 *d64,
const
decNumber *dn,
decContext *set) {
uInt status=0;
// status accumulator
Int ae;
// adjusted exponent
decNumber dw;
// work
decContext dc;
// ..
uInt comb,
exp
;
// ..
uInt uiwork;
// for macros
uInt targar[2]={0, 0};
// target 64-bit
#define targhi targar[1] // name the word with the sign
#define targlo targar[0] // and the other
// If the number has too many digits, or the exponent could be
// out of range then reduce the number under the appropriate
// constraints. This could push the number to Infinity or zero,
// so this check and rounding must be done before generating the
// decimal64]
ae=dn->exponent+dn->digits-1;
// [0 if special]
if
(dn->digits>DECIMAL64_Pmax
// too many digits
|| ae>DECIMAL64_Emax
// likely overflow
|| ae<DECIMAL64_Emin) {
// likely underflow
decContextDefault(&dc, DEC_INIT_DECIMAL64);
// [no traps]
dc.round=set->round;
// use supplied rounding
decNumberPlus(&dw, dn, &dc);
// (round and check)
// [this changes -0 to 0, so enforce the sign...]
dw.bits|=dn->bits&DECNEG;
status=dc.status;
// save status
dn=&dw;
// use the work number
}
// maybe out of range
if
(dn->bits&DECSPECIAL) {
// a special value
if
(dn->bits&DECINF) targhi=DECIMAL_Inf<<24;
else
{
// sNaN or qNaN
if
((*dn->lsu!=0 || dn->digits>1)
// non-zero coefficient
&& (dn->digits<DECIMAL64_Pmax)) {
// coefficient fits
decDigitsToDPD(dn, targar, 0);
}
if
(dn->bits&DECNAN) targhi|=DECIMAL_NaN<<24;
else
targhi|=DECIMAL_sNaN<<24;
}
// a NaN
}
// special
else
{
// is finite
if
(decNumberIsZero(dn)) {
// is a zero
// set and clamp exponent
if
(dn->exponent<-DECIMAL64_Bias) {
exp
=0;
// low clamp
status|=DEC_Clamped;
}
else
{
exp
=dn->exponent+DECIMAL64_Bias;
// bias exponent
if
(
exp
>DECIMAL64_Ehigh) {
// top clamp
exp
=DECIMAL64_Ehigh;
status|=DEC_Clamped;
}
}
comb=(
exp
>>5) & 0x18;
// msd=0, exp top 2 bits ..
}
else
{
// non-zero finite number
uInt msd;
// work
Int pad=0;
// coefficient pad digits
// the dn is known to fit, but it may need to be padded
exp
=(uInt)(dn->exponent+DECIMAL64_Bias);
// bias exponent
if
(
exp
>DECIMAL64_Ehigh) {
// fold-down case
pad=
exp
-DECIMAL64_Ehigh;
exp
=DECIMAL64_Ehigh;
// [to maximum]
status|=DEC_Clamped;
}
// fastpath common case
if
(DECDPUN==3 && pad==0) {
uInt dpd[6]={0,0,0,0,0,0};
uInt i;
Int d=dn->digits;
for
(i=0; d>0; i++, d-=3) dpd[i]=BIN2DPD[dn->lsu[i]];
targlo =dpd[0];
targlo|=dpd[1]<<10;
targlo|=dpd[2]<<20;
if
(dn->digits>6) {
targlo|=dpd[3]<<30;
targhi =dpd[3]>>2;
targhi|=dpd[4]<<8;
}
msd=dpd[5];
// [did not really need conversion]
}
else
{
// general case
decDigitsToDPD(dn, targar, pad);
// save and clear the top digit
msd=targhi>>18;
targhi&=0x0003ffff;
}
// create the combination field
if
(msd>=8) comb=0x18 | ((
exp
>>7) & 0x06) | (msd & 0x01);
else
comb=((
exp
>>5) & 0x18) | msd;
}
targhi|=comb<<26;
// add combination field ..
targhi|=(
exp
&0xff)<<18;
// .. and exponent continuation
}
// finite
if
(dn->bits&DECNEG) targhi|=0x80000000;
// add sign bit
// now write to storage; this is now always endian
if
(DECLITEND) {
// lo int then hi
UBFROMUI(d64->bytes, targar[0]);
UBFROMUI(d64->bytes+4, targar[1]);
}
else
{
// hi int then lo
UBFROMUI(d64->bytes, targar[1]);
UBFROMUI(d64->bytes+4, targar[0]);
}
if
(status!=0) decContextSetStatus(set, status);
// pass on status
// decimal64Show(d64);
return
d64;
}
// decimal64FromNumber
/* ------------------------------------------------------------------ */
/* decimal64ToNumber -- convert decimal64 to decNumber */
/* d64 is the source decimal64 */
/* dn is the target number, with appropriate space */
/* No error is possible. */
/* ------------------------------------------------------------------ */
decNumber * decimal64ToNumber(
const
decimal64 *d64, decNumber *dn) {
uInt msd;
// coefficient MSD
uInt
exp
;
// exponent top two bits
uInt comb;
// combination field
Int need;
// work
uInt uiwork;
// for macros
uInt sourar[2];
// source 64-bit
#define sourhi sourar[1] // name the word with the sign
#define sourlo sourar[0] // and the lower word
// load source from storage; this is endian
if
(DECLITEND) {
sourlo=UBTOUI(d64->bytes );
// directly load the low int
sourhi=UBTOUI(d64->bytes+4);
// then the high int
}
else
{
sourhi=UBTOUI(d64->bytes );
// directly load the high int
sourlo=UBTOUI(d64->bytes+4);
// then the low int
}
comb=(sourhi>>26)&0x1f;
// combination field
decNumberZero(dn);
// clean number
if
(sourhi&0x80000000) dn->bits=DECNEG;
// set sign if negative
msd=COMBMSD[comb];
// decode the combination field
exp
=COMBEXP[comb];
// ..
if
(
exp
==3) {
// is a special
if
(msd==0) {
dn->bits|=DECINF;
return
dn;
// no coefficient needed
}
else
if
(sourhi&0x02000000) dn->bits|=DECSNAN;
else
dn->bits|=DECNAN;
msd=0;
// no top digit
}
else
{
// is a finite number
dn->exponent=(
exp
<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias;
// unbiased
}
// get the coefficient
sourhi&=0x0003ffff;
// clean coefficient continuation
if
(msd) {
// non-zero msd
sourhi|=msd<<18;
// prefix to coefficient
need=6;
// process 6 declets
}
else
{
// msd=0
if
(!sourhi) {
// top word 0
if
(!sourlo)
return
dn;
// easy: coefficient is 0
need=3;
// process at least 3 declets
if
(sourlo&0xc0000000) need++;
// process 4 declets
// [could reduce some more, here]
}
else
{
// some bits in top word, msd=0
need=4;
// process at least 4 declets
if
(sourhi&0x0003ff00) need++;
// top declet!=0, process 5
}
}
//msd=0
decDigitsFromDPD(dn, sourar, need);
// process declets
return
dn;
}
// decimal64ToNumber
/* ------------------------------------------------------------------ */
/* to-scientific-string -- conversion to numeric string */
/* to-engineering-string -- conversion to numeric string */
/* */
/* decimal64ToString(d64, string); */
/* decimal64ToEngString(d64, string); */
/* */
/* d64 is the decimal64 format number to convert */
/* string is the string where the result will be laid out */
/* */
/* string must be at least 24 characters */
/* */
/* No error is possible, and no status can be set. */
/* ------------------------------------------------------------------ */
char
* decimal64ToEngString(
const
decimal64 *d64,
char
*string){
decNumber dn;
// work
decimal64ToNumber(d64, &dn);
decNumberToEngString(&dn, string);
return
string;
}
// decimal64ToEngString
char
* decimal64ToString(
const
decimal64 *d64,
char
*string){
uInt msd;
// coefficient MSD
Int
exp
;
// exponent top two bits or full
uInt comb;
// combination field
char
*cstart;
// coefficient start
char
*c;
// output pointer in string
const
uByte *u;
// work
char
*s, *t;
// .. (source, target)
Int dpd;
// ..
Int pre, e;
// ..
uInt uiwork;
// for macros
uInt sourar[2];
// source 64-bit
#define sourhi sourar[1] // name the word with the sign
#define sourlo sourar[0] // and the lower word
// load source from storage; this is endian
if
(DECLITEND) {
sourlo=UBTOUI(d64->bytes );
// directly load the low int
sourhi=UBTOUI(d64->bytes+4);
// then the high int
}
else
{
sourhi=UBTOUI(d64->bytes );
// directly load the high int
sourlo=UBTOUI(d64->bytes+4);
// then the low int
}
c=string;
// where result will go
if
(((Int)sourhi)<0) *c++=
'-'
;
// handle sign
comb=(sourhi>>26)&0x1f;
// combination field
msd=COMBMSD[comb];
// decode the combination field
exp
=COMBEXP[comb];
// ..
if
(
exp
==3) {
if
(msd==0) {
// infinity
strcpy
(c,
"Inf"
);
strcpy
(c+3,
"inity"
);
return
string;
// easy
}
if
(sourhi&0x02000000) *c++=
's'
;
// sNaN
strcpy
(c,
"NaN"
);
// complete word
c+=3;
// step past
if
(sourlo==0 && (sourhi&0x0003ffff)==0)
return
string;
// zero payload
// otherwise drop through to add integer; set correct exp
exp
=0; msd=0;
// setup for following code
}
else
exp
=(
exp
<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias;
// convert 16 digits of significand to characters
cstart=c;
// save start of coefficient
if
(msd) *c++=
'0'
+(
char
)msd;
// non-zero most significant digit
// Now decode the declets. After extracting each one, it is
// decoded to binary and then to a 4-char sequence by table lookup;
// the 4-chars are a 1-char length (significant digits, except 000
// has length 0). This allows us to left-align the first declet
// with non-zero content, then remaining ones are full 3-char
// length. We use fixed-length memcpys because variable-length
// causes a subroutine call in GCC. (These are length 4 for speed
// and are safe because the array has an extra terminator byte.)
#define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \
if
(c!=cstart) {
memcpy
(c, u+1, 4); c+=3;} \
else
if
(*u) {
memcpy
(c, u+4-*u, 4); c+=*u;}
dpd=(sourhi>>8)&0x3ff;
// declet 1
dpd2char;
dpd=((sourhi&0xff)<<2) | (sourlo>>30);
// declet 2
dpd2char;
dpd=(sourlo>>20)&0x3ff;
// declet 3
dpd2char;
dpd=(sourlo>>10)&0x3ff;
// declet 4
dpd2char;
dpd=(sourlo)&0x3ff;
// declet 5
dpd2char;
if
(c==cstart) *c++=
'0'
;
// all zeros -- make 0
if
(
exp
==0) {
// integer or NaN case -- easy
*c=
'\0'
;
// terminate
return
string;
}
/* non-0 exponent */
e=0;
// assume no E
pre=c-cstart+
exp
;
// [here, pre-exp is the digits count (==1 for zero)]
if
(
exp
>0 || pre<-5) {
// need exponential form
e=pre-1;
// calculate E value
pre=1;
// assume one digit before '.'
}
// exponential form
/* modify the coefficient, adding 0s, '.', and E+nn as needed */
s=c-1;
// source (LSD)
if
(pre>0) {
// ddd.ddd (plain), perhaps with E
char
*dotat=cstart+pre;
if
(dotat<c) {
// if embedded dot needed...
t=c;
// target
for
(; s>=dotat; s--, t--) *t=*s;
// open the gap; leave t at gap
*t=
'.'
;
// insert the dot
c++;
// length increased by one
}
// finally add the E-part, if needed; it will never be 0, and has
// a maximum length of 3 digits
if
(e!=0) {
*c++=
'E'
;
// starts with E
*c++=
'+'
;
// assume positive
if
(e<0) {
*(c-1)=
'-'
;
// oops, need '-'
e=-e;
// uInt, please
}
u=&BIN2CHAR[e*4];
// -> length byte
memcpy
(c, u+4-*u, 4);
// copy fixed 4 characters [is safe]
c+=*u;
// bump pointer appropriately
}
*c=
'\0'
;
// add terminator
//printf("res %s\n", string);
return
string;
}
// pre>0
/* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
t=c+1-pre;
*(t+1)=
'\0'
;
// can add terminator now
for
(; s>=cstart; s--, t--) *t=*s;
// shift whole coefficient right
c=cstart;
*c++=
'0'
;
// always starts with 0.
*c++=
'.'
;
for
(; pre<0; pre++) *c++=
'0'
;
// add any 0's after '.'
//printf("res %s\n", string);
return
string;
}
// decimal64ToString
/* ------------------------------------------------------------------ */
/* to-number -- conversion from numeric string */
/* */
/* decimal64FromString(result, string, set); */
/* */
/* result is the decimal64 format number which gets the result of */
/* the conversion */
/* *string is the character string which should contain a valid */
/* number (which may be a special value) */
/* set is the context */
/* */
/* The context is supplied to this routine is used for error handling */
/* (setting of status and traps) and for the rounding mode, only. */
/* If an error occurs, the result will be a valid decimal64 NaN. */
/* ------------------------------------------------------------------ */
decimal64 * decimal64FromString(decimal64 *result,
const
char
*string,
decContext *set) {
decContext dc;
// work
decNumber dn;
// ..
decContextDefault(&dc, DEC_INIT_DECIMAL64);
// no traps, please
dc.round=set->round;
// use supplied rounding
decNumberFromString(&dn, string, &dc);
// will round if needed
decimal64FromNumber(result, &dn, &dc);
if
(dc.status!=0) {
// something happened
decContextSetStatus(set, dc.status);
// .. pass it on
}
return
result;
}
// decimal64FromString
/* ------------------------------------------------------------------ */
/* decimal64IsCanonical -- test whether encoding is canonical */
/* d64 is the source decimal64 */
/* returns 1 if the encoding of d64 is canonical, 0 otherwise */
/* No error is possible. */
/* ------------------------------------------------------------------ */
uInt decimal64IsCanonical(
const
decimal64 *d64) {
decNumber dn;
// work
decimal64 canon;
// ..
decContext dc;
// ..
decContextDefault(&dc, DEC_INIT_DECIMAL64);
decimal64ToNumber(d64, &dn);
decimal64FromNumber(&canon, &dn, &dc);
// canon will now be canonical
return
memcmp
(d64, &canon, DECIMAL64_Bytes)==0;
}
// decimal64IsCanonical
/* ------------------------------------------------------------------ */
/* decimal64Canonical -- copy an encoding, ensuring it is canonical */
/* d64 is the source decimal64 */
/* result is the target (may be the same decimal64) */
/* returns result */
/* No error is possible. */
/* ------------------------------------------------------------------ */
decimal64 * decimal64Canonical(decimal64 *result,
const
decimal64 *d64) {
decNumber dn;
// work
decContext dc;
// ..
decContextDefault(&dc, DEC_INIT_DECIMAL64);
decimal64ToNumber(d64, &dn);
decimal64FromNumber(result, &dn, &dc);
// result will now be canonical
return
result;
}
// decimal64Canonical
#if DECTRACE || DECCHECK
/* Macros for accessing decimal64 fields. These assume the
argument is a reference (pointer) to the decimal64 structure,
and the decimal64 is in network byte order (big-endian) */
// Get sign
#define decimal64Sign(d) ((unsigned)(d)->bytes[0]>>7)
// Get combination field
#define decimal64Comb(d) (((d)->bytes[0] & 0x7c)>>2)
// Get exponent continuation [does not remove bias]
#define decimal64ExpCon(d) ((((d)->bytes[0] & 0x03)<<6) \
| ((unsigned)(d)->bytes[1]>>2))
// Set sign [this assumes sign previously 0]
#define decimal64SetSign(d, b) { \
(d)->bytes[0]|=((unsigned)(b)<<7);}
// Set exponent continuation [does not apply bias]
// This assumes range has been checked and exponent previously 0;
// type of exponent must be unsigned
#define decimal64SetExpCon(d, e) { \
(d)->bytes[0]|=(uByte)((e)>>6); \
(d)->bytes[1]|=(uByte)(((e)&0x3F)<<2);}
/* ------------------------------------------------------------------ */
/* decimal64Show -- display a decimal64 in hexadecimal [debug aid] */
/* d64 -- the number to show */
/* ------------------------------------------------------------------ */
// Also shows sign/cob/expconfields extracted
void
decimal64Show(
const
decimal64 *d64) {
char
buf[DECIMAL64_Bytes*2+1];
Int i, j=0;
if
(DECLITEND) {
for
(i=0; i<DECIMAL64_Bytes; i++, j+=2) {
sprintf
(&buf[j],
"%02x"
, d64->bytes[7-i]);
}
printf
(
" D64> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n"
, buf,
d64->bytes[7]>>7, (d64->bytes[7]>>2)&0x1f,
((d64->bytes[7]&0x3)<<6)| (d64->bytes[6]>>2));
}
else
{
// big-endian
for
(i=0; i<DECIMAL64_Bytes; i++, j+=2) {
sprintf
(&buf[j],
"%02x"
, d64->bytes[i]);
}
printf
(
" D64> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n"
, buf,
decimal64Sign(d64), decimal64Comb(d64), decimal64ExpCon(d64));
}
}
// decimal64Show
#endif
/* ================================================================== */
/* Shared utility routines and tables */
/* ================================================================== */
// define and include the conversion tables to use for shared code
#if DECDPUN==3
#define DEC_DPD2BIN 1
#else
#define DEC_DPD2BCD 1
#endif
#include "decDPD.h" // lookup tables
// The maximum number of decNumberUnits needed for a working copy of
// the units array is the ceiling of digits/DECDPUN, where digits is
// the maximum number of digits in any of the formats for which this
// is used. decimal128.h must not be included in this module, so, as
// a very special case, that number is defined as a literal here.
#define DECMAX754 34
#define DECMAXUNITS ((DECMAX754+DECDPUN-1)/DECDPUN)
/* ------------------------------------------------------------------ */
/* Combination field lookup tables (uInts to save measurable work) */
/* */
/* COMBEXP - 2-bit most-significant-bits of exponent */
/* [11 if an Infinity or NaN] */
/* COMBMSD - 4-bit most-significant-digit */
/* [0=Infinity, 1=NaN if COMBEXP=11] */
/* */
/* Both are indexed by the 5-bit combination field (0-31) */
/* ------------------------------------------------------------------ */
const
uInt COMBEXP[32]={0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
0, 0, 1, 1, 2, 2, 3, 3};
const
uInt COMBMSD[32]={0, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 8, 9, 8, 9, 0, 1};
/* ------------------------------------------------------------------ */
/* decDigitsToDPD -- pack coefficient into DPD form */
/* */
/* dn is the source number (assumed valid, max DECMAX754 digits) */
/* targ is 1, 2, or 4-element uInt array, which the caller must */
/* have cleared to zeros */
/* shift is the number of 0 digits to add on the right (normally 0) */
/* */
/* The coefficient must be known small enough to fit. The full */
/* coefficient is copied, including the leading 'odd' digit. This */
/* digit is retrieved and packed into the combination field by the */
/* caller. */
/* */
/* The target uInts are altered only as necessary to receive the */
/* digits of the decNumber. When more than one uInt is needed, they */
/* are filled from left to right (that is, the uInt at offset 0 will */
/* end up with the least-significant digits). */
/* */
/* shift is used for 'fold-down' padding. */
/* */
/* No error is possible. */
/* ------------------------------------------------------------------ */
#if DECDPUN<=4
// Constant multipliers for divide-by-power-of five using reciprocal
// multiply, after removing powers of 2 by shifting, and final shift
// of 17 [we only need up to **4]
static
const
uInt multies[]={131073, 26215, 5243, 1049, 210};
// QUOT10 -- macro to return the quotient of unit u divided by 10**n
#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
#endif
void
decDigitsToDPD(
const
decNumber *dn, uInt *targ, Int shift) {
Int cut;
// work
Int n;
// output bunch counter
Int digits=dn->digits;
// digit countdown
uInt dpd;
// densely packed decimal value
uInt bin;
// binary value 0-999
uInt *uout=targ;
// -> current output uInt
uInt uoff=0;
// -> current output offset [from right]
const
Unit *inu=dn->lsu;
// -> current input unit
Unit uar[DECMAXUNITS];
// working copy of units, iff shifted
#if DECDPUN!=3 // not fast path
Unit in;
// current unit
#endif
if
(shift!=0) {
// shift towards most significant required
// shift the units array to the left by pad digits and copy
// [this code is a special case of decShiftToMost, which could
// be used instead if exposed and the array were copied first]
const
Unit *source;
// ..
Unit *target, *first;
// ..
uInt next=0;
// work
source=dn->lsu+D2U(digits)-1;
// where msu comes from
target=uar+D2U(digits)-1+D2U(shift);
// where upper part of first cut goes
cut=DECDPUN-MSUDIGITS(shift);
// where to slice
if
(cut==0) {
// unit-boundary case
for
(; source>=dn->lsu; source--, target--) *target=*source;
}
else
{
first=uar+D2U(digits+shift)-1;
// where msu will end up
for
(; source>=dn->lsu; source--, target--) {
// split the source Unit and accumulate remainder for next
#if DECDPUN<=4
uInt quot=QUOT10(*source, cut);
uInt rem=*source-quot*DECPOWERS[cut];
next+=quot;
#else
uInt rem=*source%DECPOWERS[cut];
next+=*source/DECPOWERS[cut];
#endif
if
(target<=first) *target=(Unit)next;
// write to target iff valid
next=rem*DECPOWERS[DECDPUN-cut];
// save remainder for next Unit
}
}
// shift-move
// propagate remainder to one below and clear the rest
for
(; target>=uar; target--) {
*target=(Unit)next;
next=0;
}
digits+=shift;
// add count (shift) of zeros added
inu=uar;
// use units in working array
}
/* now densely pack the coefficient into DPD declets */
#if DECDPUN!=3 // not fast path
in=*inu;
// current unit
cut=0;
// at lowest digit
bin=0;
// [keep compiler quiet]
#endif
for
(n=0; digits>0; n++) {
// each output bunch
#if DECDPUN==3 // fast path, 3-at-a-time
bin=*inu;
// 3 digits ready for convert
digits-=3;
// [may go negative]
inu++;
// may need another
#else // must collect digit-by-digit
Unit dig;
// current digit
Int j;
// digit-in-declet count
for
(j=0; j<3; j++) {
#if DECDPUN<=4
Unit temp=(Unit)((uInt)(in*6554)>>16);
dig=(Unit)(in-X10(temp));
in=temp;
#else
dig=in%10;
in=in/10;
#endif
if
(j==0) bin=dig;
else
if
(j==1) bin+=X10(dig);
else
/* j==2 */
bin+=X100(dig);
digits--;
if
(digits==0)
break
;
// [also protects *inu below]
cut++;
if
(cut==DECDPUN) {inu++; in=*inu; cut=0;}
}
#endif
// here there are 3 digits in bin, or have used all input digits
dpd=BIN2DPD[bin];
// write declet to uInt array
*uout|=dpd<<uoff;
uoff+=10;
if
(uoff<32)
continue
;
// no uInt boundary cross
uout++;
uoff-=32;
*uout|=dpd>>(10-uoff);
// collect top bits
}
// n declets
return
;
}
// decDigitsToDPD
/* ------------------------------------------------------------------ */
/* decDigitsFromDPD -- unpack a format's coefficient */
/* */
/* dn is the target number, with 7, 16, or 34-digit space. */
/* sour is a 1, 2, or 4-element uInt array containing only declets */
/* declets is the number of (right-aligned) declets in sour to */
/* be processed. This may be 1 more than the obvious number in */
/* a format, as any top digit is prefixed to the coefficient */
/* continuation field. It also may be as small as 1, as the */
/* caller may pre-process leading zero declets. */
/* */
/* When doing the 'extra declet' case care is taken to avoid writing */
/* extra digits when there are leading zeros, as these could overflow */
/* the units array when DECDPUN is not 3. */
/* */
/* The target uInts are used only as necessary to process declets */
/* declets into the decNumber. When more than one uInt is needed, */
/* they are used from left to right (that is, the uInt at offset 0 */
/* provides the least-significant digits). */
/* */
/* dn->digits is set, but not the sign or exponent. */
/* No error is possible [the redundant 888 codes are allowed]. */
/* ------------------------------------------------------------------ */
void
decDigitsFromDPD(decNumber *dn,
const
uInt *sour, Int declets) {
uInt dpd;
// collector for 10 bits
Int n;
// counter
Unit *uout=dn->lsu;
// -> current output unit
Unit *last=uout;
// will be unit containing msd
const
uInt *uin=sour;
// -> current input uInt
uInt uoff=0;
// -> current input offset [from right]
#if DECDPUN!=3
uInt bcd;
// BCD result
uInt nibble;
// work
Unit out=0;
// accumulator
Int cut=0;
// power of ten in current unit
#endif
#if DECDPUN>4
uInt
const
*
pow
;
// work
#endif
// Expand the densely-packed integer, right to left
for
(n=declets-1; n>=0; n--) {
// count down declets of 10 bits
dpd=*uin>>uoff;
uoff+=10;
if
(uoff>32) {
// crossed uInt boundary
uin++;
uoff-=32;
// [if using this code for wider, check this]
dpd|=*uin<<(10-uoff);
// get waiting bits
}
dpd&=0x3ff;
// clear uninteresting bits
#if DECDPUN==3
if
(dpd==0) *uout=0;
else
{
*uout=DPD2BIN[dpd];
// convert 10 bits to binary 0-999
last=uout;
// record most significant unit
}
uout++;
}
// n
#else // DECDPUN!=3
if
(dpd==0) {
// fastpath [e.g., leading zeros]
// write out three 0 digits (nibbles); out may have digit(s)
cut++;
if
(cut==DECDPUN) {*uout=out;
if
(out) {last=uout; out=0;} uout++; cut=0;}
if
(n==0)
break
;
// [as below, works even if MSD=0]
cut++;
if
(cut==DECDPUN) {*uout=out;
if
(out) {last=uout; out=0;} uout++; cut=0;}
cut++;
if
(cut==DECDPUN) {*uout=out;
if
(out) {last=uout; out=0;} uout++; cut=0;}
continue
;
}
bcd=DPD2BCD[dpd];
// convert 10 bits to 12 bits BCD
// now accumulate the 3 BCD nibbles into units
nibble=bcd & 0x00f;
if
(nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
cut++;
if
(cut==DECDPUN) {*uout=out;
if
(out) {last=uout; out=0;} uout++; cut=0;}
bcd>>=4;
// if this is the last declet and the remaining nibbles in bcd
// are 00 then process no more nibbles, because this could be
// the 'odd' MSD declet and writing any more Units would then
// overflow the unit array
if
(n==0 && !bcd)
break
;
nibble=bcd & 0x00f;
if
(nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
cut++;
if
(cut==DECDPUN) {*uout=out;
if
(out) {last=uout; out=0;} uout++; cut=0;}
bcd>>=4;
nibble=bcd & 0x00f;
if
(nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
cut++;
if
(cut==DECDPUN) {*uout=out;
if
(out) {last=uout; out=0;} uout++; cut=0;}
}
// n
if
(cut!=0) {
// some more left over
*uout=out;
// write out final unit
if
(out) last=uout;
// and note if non-zero
}
#endif
// here, last points to the most significant unit with digits;
// inspect it to get the final digits count -- this is essentially
// the same code as decGetDigits in decNumber.c
dn->digits=(last-dn->lsu)*DECDPUN+1;
// floor of digits, plus
// must be at least 1 digit
#if DECDPUN>1
if
(*last<10)
return
;
// common odd digit or 0
dn->digits++;
// must be 2 at least
#if DECDPUN>2
if
(*last<100)
return
;
// 10-99
dn->digits++;
// must be 3 at least
#if DECDPUN>3
if
(*last<1000)
return
;
// 100-999
dn->digits++;
// must be 4 at least
#if DECDPUN>4
for
(
pow
=&DECPOWERS[4]; *last>=*
pow
;
pow
++) dn->digits++;
#endif
#endif
#endif
#endif
return
;
}
//decDigitsFromDPD